Expand description
The grand product argument protocol based on a GKR-instantiation.
Grand Product Argument reduces a grand product claim to a multilinear evalcheck claim. A Grand Product Claim is that a multilinear polynomials evaluations over the hypercube multiply to some claimed final product.
The GKR circuit used here has only one gate type: the fan-in-2 multiplication gate. In the natural way, the 2^n input wires are multiplied together in n layers to produce the output.
Naming Convention for challenges:
- Sumcheck challenge: $r’_k$ $k$-variate sumcheck challenge vector generated during the course of gpa_sumcheck
- GPA Challenge $\mu_k$ 1-variate generated during layer proving after the sumcheck proof is created after the layer k to k+1 sumcheck
- Layer Challenge $r_{k+1} := (r_k, \mu_k)$
$k+1$ variate, materialized as a combination of the above two, used in
LayerClaim
See Thaler13 Section 5.3.1 for further background on the GKR polynomial identities for a binary tree circuit.
Modules§
- The multivariate sumcheck polynomial protocol, special cased when the sumcheck is part of the GPA Protocol.
Structs§
- LayerClaim is a claim about the evaluation of the kth layer-multilinear at a specific evaluation point
Enums§
Functions§
- Proves batch reduction turning each GrandProductClaim into an EvalcheckMultilinearClaim
- Verifies batch reduction turning each GrandProductClaim into an EvalcheckMultilinearClaim