binius_core/merkle_tree_vcs/
binary_merkle_tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2024 Irreducible Inc.

use super::errors::Error;
use binius_hash::Hasher;
use binius_utils::bail;
use p3_symmetric::PseudoCompressionFunction;
use p3_util::log2_strict_usize;
use rayon::{prelude::*, slice::ParallelSlice};
use std::{fmt::Debug, mem::MaybeUninit};
use tracing::instrument;

/// A binary Merkle tree that commits batches of vectors.
///
/// The vector entries at each index in a batch are hashed together into leaf digests. Then a
/// Merkle tree is constructed over the leaf digests. The implementation requires that the vector
/// lengths are all equal to each other and a power of two.
#[derive(Debug, Clone)]
pub struct BinaryMerkleTree<D> {
	/// Base-2 logarithm of the number of leaves
	pub log_len: usize,
	/// The inner nodes, arranged as a flattened array of layers with the root at the end
	pub inner_nodes: Vec<D>,
}

impl<D> BinaryMerkleTree<D>
where
	D: Copy + Default + Send + Sync + Debug,
{
	pub fn build<T, H, C>(compression: &C, elements: &[T], batch_size: usize) -> Result<Self, Error>
	where
		T: Sync,
		H: Hasher<T, Digest = D> + Send,
		C: PseudoCompressionFunction<D, 2> + Sync,
	{
		if elements.len() % batch_size != 0 {
			bail!(Error::IncorrectBatchSize);
		}

		let len = elements.len() / batch_size;

		if !len.is_power_of_two() {
			bail!(Error::PowerOfTwoLengthRequired);
		}

		let log_len = log2_strict_usize(len);

		Self::internal_build(
			compression,
			|inner_nodes| hash_interleaved::<_, H>(elements, inner_nodes),
			log_len,
		)
	}

	fn internal_build<C>(
		compression: &C,
		// Must either successfully initialize the passed in slice or return error
		hash_leaves: impl FnOnce(&mut [MaybeUninit<D>]) -> Result<(), Error>,
		log_len: usize,
	) -> Result<Self, Error>
	where
		C: PseudoCompressionFunction<D, 2> + Sync,
	{
		let total_length = (1 << (log_len + 1)) - 1;
		let mut inner_nodes = Vec::with_capacity(total_length);

		hash_leaves(&mut inner_nodes.spare_capacity_mut()[..(1 << log_len)])?;

		let (prev_layer, mut remaining) =
			inner_nodes.spare_capacity_mut().split_at_mut(1 << log_len);

		let mut prev_layer = unsafe {
			// SAFETY: prev-layer was initialized by hash_leaves
			slice_assume_init_mut(prev_layer)
		};
		for i in 1..(log_len + 1) {
			let (next_layer, next_remaining) = remaining.split_at_mut(1 << (log_len - i));
			remaining = next_remaining;

			Self::compress_layer(compression, prev_layer, next_layer);

			prev_layer = unsafe {
				// SAFETY: next_layer was just initialized by compress_layer
				slice_assume_init_mut(next_layer)
			};
		}

		unsafe {
			// SAFETY: inner_nodes should be entirely initialized by now
			// Note that we don't incrementally update inner_nodes.len() since
			// that doesn't play well with using split_at_mut on spare capacity.
			inner_nodes.set_len(total_length);
		}
		Ok(Self {
			log_len,
			inner_nodes,
		})
	}

	#[instrument("BinaryMerkleTree::build", skip_all, level = "debug")]
	pub fn build_from_iterator<T, H, C, ParIter>(
		compression: &C,
		iterated_chunks: ParIter,
		log_len: usize,
	) -> Result<Self, Error>
	where
		H: Hasher<T, Digest = D> + Send,
		C: PseudoCompressionFunction<D, 2> + Sync,
		ParIter: IndexedParallelIterator<Item: IntoIterator<Item = T>>,
	{
		Self::internal_build(
			compression,
			|inner_nodes| hash_iterated::<_, H, _>(iterated_chunks, inner_nodes),
			log_len,
		)
	}

	pub fn root(&self) -> D {
		self.inner_nodes
			.last()
			.expect("MerkleTree inner nodes can't be empty")
			.to_owned()
	}

	pub fn layer(&self, layer_depth: usize) -> Result<&[D], Error> {
		if layer_depth > self.log_len {
			bail!(Error::IncorrectLayerDepth);
		}
		let range_start = self.inner_nodes.len() + 1 - (1 << (layer_depth + 1));

		Ok(&self.inner_nodes[range_start..range_start + (1 << layer_depth)])
	}

	/// Get a Merkle branch for the given index
	///
	/// Throws if the index is out of range
	pub fn branch(&self, index: usize, layer_depth: usize) -> Result<Vec<D>, Error> {
		if index >= 1 << self.log_len || layer_depth > self.log_len {
			return Err(Error::IndexOutOfRange {
				max: (1 << self.log_len) - 1,
			});
		}

		let branch = (0..self.log_len - layer_depth)
			.map(|j| {
				let node_index = (((1 << j) - 1) << (self.log_len + 1 - j)) | (index >> j) ^ 1;
				self.inner_nodes[node_index]
			})
			.collect();

		Ok(branch)
	}

	#[tracing::instrument("MerkleTree::compress_layer", skip_all, level = "debug")]
	fn compress_layer<C>(compression: &C, prev_layer: &[D], next_layer: &mut [MaybeUninit<D>])
	where
		C: PseudoCompressionFunction<D, 2> + Sync,
	{
		prev_layer
			.par_chunks_exact(2)
			.zip(next_layer.par_iter_mut())
			.for_each(|(prev_pair, next_digest)| {
				next_digest.write(
					compression.compress(
						prev_pair
							.try_into()
							.expect("prev_pair is an chunk of exactly 2 elements"),
					),
				);
			})
	}
}

/// Hashes the elements in chunks of a vector into digests.
///
/// Given a vector of elements and an output buffer of N hash digests, this splits the elements
/// into N equal-sized chunks and hashes each chunks into the corresponding output digest. This
/// returns the number of elements hashed into each digest.
#[tracing::instrument("hash_interleaved", skip_all, level = "debug")]
fn hash_interleaved<T, H>(elems: &[T], digests: &mut [MaybeUninit<H::Digest>]) -> Result<(), Error>
where
	T: Sync,
	H: Hasher<T> + Send,
	H::Digest: Send,
{
	if elems.len() % digests.len() != 0 {
		return Err(Error::IncorrectVectorLen {
			expected: digests.len(),
		});
	}
	let batch_size = elems.len() / digests.len();
	digests
		.par_iter_mut()
		.zip(elems.par_chunks(batch_size))
		.for_each_init(H::new, |hasher, (digest, elems)| {
			hasher.update(elems);
			hasher.finalize_into_reset(digest);
		});
	Ok(())
}

fn hash_iterated<T, H, ParIter>(
	iterated_chunks: ParIter,
	digests: &mut [MaybeUninit<H::Digest>],
) -> Result<(), Error>
where
	H: Hasher<T> + Send,
	H::Digest: Send,
	ParIter: IndexedParallelIterator<Item: IntoIterator<Item = T>>,
{
	digests
		.par_iter_mut()
		.zip(iterated_chunks)
		.for_each_init(H::new, |hasher, (digest, elems)| {
			for elem in elems {
				hasher.update(std::slice::from_ref(&elem));
			}
			hasher.finalize_into_reset(digest);
		});
	Ok(())
}

/// This can be removed when MaybeUninit::slice_assume_init_mut is stabilized
/// <https://github.com/rust-lang/rust/issues/63569>
///
/// # Safety
///
/// It is up to the caller to guarantee that the `MaybeUninit<T>` elements
/// really are in an initialized state.
/// Calling this when the content is not yet fully initialized causes undefined behavior.
///
/// See [`assume_init_mut`] for more details and examples.
///
/// [`assume_init_mut`]: MaybeUninit::assume_init_mut
pub const unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
	std::mem::transmute(slice)
}