binius_core/protocols/evalcheck/
verify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2024-2025 Irreducible Inc.

use std::mem;

use binius_field::{util::inner_product_unchecked, TowerField};
use binius_math::extrapolate_line_scalar;
use getset::{Getters, MutGetters};
use tracing::instrument;

use super::{
	error::{Error, VerificationError},
	evalcheck::{EvalcheckMultilinearClaim, EvalcheckProof},
	subclaims::{
		add_bivariate_sumcheck_to_constraints, packed_sumcheck_meta, shifted_sumcheck_meta,
	},
};
use crate::oracle::{
	ConstraintSet, ConstraintSetBuilder, Error as OracleError, MultilinearOracleSet,
	MultilinearPolyOracle, ProjectionVariant,
};

/// A mutable verifier state.
///
/// Can be persisted across [`EvalcheckVerifier::verify`] invocations. Accumulates
/// `new_sumchecks` bivariate sumcheck constraints, as well as holds mutable references to
/// the trace (to which new oracles & multilinears may be added during verification)
#[derive(Getters, MutGetters)]
pub struct EvalcheckVerifier<'a, F>
where
	F: TowerField,
{
	pub(crate) oracles: &'a mut MultilinearOracleSet<F>,

	#[getset(get = "pub", get_mut = "pub")]
	committed_eval_claims: Vec<EvalcheckMultilinearClaim<F>>,

	new_sumcheck_constraints: Vec<ConstraintSetBuilder<F>>,
}

impl<'a, F: TowerField> EvalcheckVerifier<'a, F> {
	/// Create a new verifier state from a mutable reference to the oracle set
	/// (it needs to be mutable because `new_sumcheck` reduction may add new
	/// oracles & multilinears)
	pub fn new(oracles: &'a mut MultilinearOracleSet<F>) -> Self {
		Self {
			oracles,
			committed_eval_claims: Vec::new(),
			new_sumcheck_constraints: Vec::new(),
		}
	}

	/// A helper method to move out sumcheck constraints
	pub fn take_new_sumcheck_constraints(&mut self) -> Result<Vec<ConstraintSet<F>>, OracleError> {
		self.new_sumcheck_constraints
			.iter_mut()
			.map(|builder| mem::take(builder).build_one(self.oracles))
			.filter(|constraint| !matches!(constraint, Err(OracleError::EmptyConstraintSet)))
			.rev()
			.collect()
	}

	/// Verify an evalcheck claim.
	///
	/// See [`EvalcheckProver::prove`](`super::prove::EvalcheckProver::prove`) docs for comments.
	#[instrument(skip_all, name = "EvalcheckVerifierState::verify", level = "debug")]
	pub fn verify(
		&mut self,
		evalcheck_claims: Vec<EvalcheckMultilinearClaim<F>>,
		evalcheck_proofs: Vec<EvalcheckProof<F>>,
	) -> Result<(), Error> {
		for (claim, proof) in evalcheck_claims
			.into_iter()
			.zip(evalcheck_proofs.into_iter())
		{
			self.verify_multilinear(claim, proof)?;
		}

		Ok(())
	}

	fn verify_multilinear(
		&mut self,
		evalcheck_claim: EvalcheckMultilinearClaim<F>,
		evalcheck_proof: EvalcheckProof<F>,
	) -> Result<(), Error> {
		let EvalcheckMultilinearClaim {
			poly: multilinear,
			eval_point,
			eval,
		} = evalcheck_claim;

		match multilinear {
			MultilinearPolyOracle::Transparent { id, inner, name } => {
				match evalcheck_proof {
					EvalcheckProof::Transparent => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let actual_eval = inner.poly().evaluate(&eval_point)?;
				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}
			}

			MultilinearPolyOracle::Committed { .. } => {
				match evalcheck_proof {
					EvalcheckProof::Committed => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				}

				let claim = EvalcheckMultilinearClaim {
					poly: multilinear,
					eval_point,
					eval,
				};

				self.committed_eval_claims.push(claim);
			}

			MultilinearPolyOracle::Repeating { inner, .. } => {
				let subproof = match evalcheck_proof {
					EvalcheckProof::Repeating(subproof) => subproof,
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let n_vars = inner.n_vars();
				let subclaim = EvalcheckMultilinearClaim {
					poly: (*inner).clone(),
					eval_point: eval_point[..n_vars].into(),
					eval,
				};

				self.verify_multilinear(subclaim, *subproof)?;
			}

			MultilinearPolyOracle::Projected { projected, .. } => {
				let (inner, values) = (projected.inner(), projected.values());
				let eval_point = match projected.projection_variant() {
					ProjectionVariant::LastVars => {
						let mut eval_point = eval_point.to_vec();
						eval_point.extend(values);
						eval_point
					}
					ProjectionVariant::FirstVars => {
						values.iter().cloned().chain(eval_point.to_vec()).collect()
					}
				};

				let new_claim = EvalcheckMultilinearClaim {
					poly: (**inner).clone(),
					eval_point: eval_point.into(),
					eval,
				};

				self.verify_multilinear(new_claim, evalcheck_proof)?;
			}

			MultilinearPolyOracle::Shifted { shifted, .. } => {
				match evalcheck_proof {
					EvalcheckProof::Shifted => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let meta = shifted_sumcheck_meta(self.oracles, &shifted, &eval_point)?;
				add_bivariate_sumcheck_to_constraints(
					meta,
					&mut self.new_sumcheck_constraints,
					shifted.block_size(),
					eval,
				)
			}

			MultilinearPolyOracle::Packed { packed, .. } => {
				match evalcheck_proof {
					EvalcheckProof::Packed => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let meta = packed_sumcheck_meta(self.oracles, &packed, &eval_point)?;
				add_bivariate_sumcheck_to_constraints(
					meta,
					&mut self.new_sumcheck_constraints,
					packed.log_degree(),
					eval,
				)
			}

			MultilinearPolyOracle::LinearCombination {
				id,
				linear_combination,
				name,
			} => {
				let subproofs = match evalcheck_proof {
					EvalcheckProof::LinearCombination { subproofs } => subproofs,
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				if subproofs.len() != linear_combination.n_polys() {
					return Err(VerificationError::SubproofMismatch.into());
				}

				// Verify the evaluation of the linear combination over the claimed evaluations
				let actual_eval = linear_combination.offset()
					+ inner_product_unchecked::<F, F>(
						subproofs.iter().map(|(eval, _)| *eval),
						linear_combination.coefficients(),
					);

				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}

				subproofs
					.into_iter()
					.zip(linear_combination.polys())
					.try_for_each(|((eval, subproof), suboracle)| {
						self.verify_multilinear_subclaim(
							eval,
							subproof,
							suboracle.clone(),
							&eval_point,
						)
					})?;
			}
			MultilinearPolyOracle::ZeroPadded {
				id, inner, name, ..
			} => {
				let (inner_eval, subproof) = match evalcheck_proof {
					EvalcheckProof::ZeroPadded(eval, subproof) => (eval, subproof),
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let inner_n_vars = inner.n_vars();

				let (subclaim_eval_point, zs) = eval_point.split_at(inner_n_vars);

				let mut extrapolate_eval = inner_eval;

				for z in zs {
					extrapolate_eval =
						extrapolate_line_scalar::<F, F>(F::ZERO, extrapolate_eval, *z);
				}

				if extrapolate_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}

				self.verify_multilinear_subclaim(
					inner_eval,
					*subproof,
					(*inner).clone(),
					subclaim_eval_point,
				)?;
			}
		}

		Ok(())
	}

	fn verify_multilinear_subclaim(
		&mut self,
		eval: F,
		subproof: EvalcheckProof<F>,
		poly: MultilinearPolyOracle<F>,
		eval_point: &[F],
	) -> Result<(), Error> {
		let subclaim = EvalcheckMultilinearClaim {
			poly,
			eval_point: eval_point.into(),
			eval,
		};
		self.verify_multilinear(subclaim, subproof)
	}
}