binius_core/protocols/evalcheck/
verify.rsuse std::mem;
use binius_field::{util::inner_product_unchecked, TowerField};
use binius_math::extrapolate_line_scalar;
use getset::{Getters, MutGetters};
use tracing::instrument;
use super::{
error::{Error, VerificationError},
evalcheck::{EvalcheckMultilinearClaim, EvalcheckProof},
subclaims::{
add_bivariate_sumcheck_to_constraints, packed_sumcheck_meta, shifted_sumcheck_meta,
},
};
use crate::oracle::{
ConstraintSet, ConstraintSetBuilder, Error as OracleError, MultilinearOracleSet,
MultilinearPolyOracle, ProjectionVariant,
};
#[derive(Getters, MutGetters)]
pub struct EvalcheckVerifier<'a, F>
where
F: TowerField,
{
pub(crate) oracles: &'a mut MultilinearOracleSet<F>,
#[getset(get = "pub", get_mut = "pub")]
committed_eval_claims: Vec<EvalcheckMultilinearClaim<F>>,
new_sumcheck_constraints: Vec<ConstraintSetBuilder<F>>,
}
impl<'a, F: TowerField> EvalcheckVerifier<'a, F> {
pub fn new(oracles: &'a mut MultilinearOracleSet<F>) -> Self {
Self {
oracles,
committed_eval_claims: Vec::new(),
new_sumcheck_constraints: Vec::new(),
}
}
pub fn take_new_sumcheck_constraints(&mut self) -> Result<Vec<ConstraintSet<F>>, OracleError> {
self.new_sumcheck_constraints
.iter_mut()
.map(|builder| mem::take(builder).build_one(self.oracles))
.filter(|constraint| !matches!(constraint, Err(OracleError::EmptyConstraintSet)))
.rev()
.collect()
}
#[instrument(skip_all, name = "EvalcheckVerifierState::verify", level = "debug")]
pub fn verify(
&mut self,
evalcheck_claims: Vec<EvalcheckMultilinearClaim<F>>,
evalcheck_proofs: Vec<EvalcheckProof<F>>,
) -> Result<(), Error> {
for (claim, proof) in evalcheck_claims
.into_iter()
.zip(evalcheck_proofs.into_iter())
{
self.verify_multilinear(claim, proof)?;
}
Ok(())
}
fn verify_multilinear(
&mut self,
evalcheck_claim: EvalcheckMultilinearClaim<F>,
evalcheck_proof: EvalcheckProof<F>,
) -> Result<(), Error> {
let EvalcheckMultilinearClaim {
poly: multilinear,
eval_point,
eval,
} = evalcheck_claim;
match multilinear {
MultilinearPolyOracle::Transparent { id, inner, name } => {
match evalcheck_proof {
EvalcheckProof::Transparent => {}
_ => return Err(VerificationError::SubproofMismatch.into()),
};
let actual_eval = inner.poly().evaluate(&eval_point)?;
if actual_eval != eval {
return Err(VerificationError::IncorrectEvaluation(
name.unwrap_or(id.to_string()),
)
.into());
}
}
MultilinearPolyOracle::Committed { .. } => {
match evalcheck_proof {
EvalcheckProof::Committed => {}
_ => return Err(VerificationError::SubproofMismatch.into()),
}
let claim = EvalcheckMultilinearClaim {
poly: multilinear,
eval_point,
eval,
};
self.committed_eval_claims.push(claim);
}
MultilinearPolyOracle::Repeating { inner, .. } => {
let subproof = match evalcheck_proof {
EvalcheckProof::Repeating(subproof) => subproof,
_ => return Err(VerificationError::SubproofMismatch.into()),
};
let n_vars = inner.n_vars();
let subclaim = EvalcheckMultilinearClaim {
poly: (*inner).clone(),
eval_point: eval_point[..n_vars].into(),
eval,
};
self.verify_multilinear(subclaim, *subproof)?;
}
MultilinearPolyOracle::Projected { projected, .. } => {
let (inner, values) = (projected.inner(), projected.values());
let eval_point = match projected.projection_variant() {
ProjectionVariant::LastVars => {
let mut eval_point = eval_point.to_vec();
eval_point.extend(values);
eval_point
}
ProjectionVariant::FirstVars => {
values.iter().cloned().chain(eval_point.to_vec()).collect()
}
};
let new_claim = EvalcheckMultilinearClaim {
poly: (**inner).clone(),
eval_point: eval_point.into(),
eval,
};
self.verify_multilinear(new_claim, evalcheck_proof)?;
}
MultilinearPolyOracle::Shifted { shifted, .. } => {
match evalcheck_proof {
EvalcheckProof::Shifted => {}
_ => return Err(VerificationError::SubproofMismatch.into()),
};
let meta = shifted_sumcheck_meta(self.oracles, &shifted, &eval_point)?;
add_bivariate_sumcheck_to_constraints(
meta,
&mut self.new_sumcheck_constraints,
shifted.block_size(),
eval,
)
}
MultilinearPolyOracle::Packed { packed, .. } => {
match evalcheck_proof {
EvalcheckProof::Packed => {}
_ => return Err(VerificationError::SubproofMismatch.into()),
};
let meta = packed_sumcheck_meta(self.oracles, &packed, &eval_point)?;
add_bivariate_sumcheck_to_constraints(
meta,
&mut self.new_sumcheck_constraints,
packed.log_degree(),
eval,
)
}
MultilinearPolyOracle::LinearCombination {
id,
linear_combination,
name,
} => {
let subproofs = match evalcheck_proof {
EvalcheckProof::LinearCombination { subproofs } => subproofs,
_ => return Err(VerificationError::SubproofMismatch.into()),
};
if subproofs.len() != linear_combination.n_polys() {
return Err(VerificationError::SubproofMismatch.into());
}
let actual_eval = linear_combination.offset()
+ inner_product_unchecked::<F, F>(
subproofs.iter().map(|(eval, _)| *eval),
linear_combination.coefficients(),
);
if actual_eval != eval {
return Err(VerificationError::IncorrectEvaluation(
name.unwrap_or(id.to_string()),
)
.into());
}
subproofs
.into_iter()
.zip(linear_combination.polys())
.try_for_each(|((eval, subproof), suboracle)| {
self.verify_multilinear_subclaim(
eval,
subproof,
suboracle.clone(),
&eval_point,
)
})?;
}
MultilinearPolyOracle::ZeroPadded {
id, inner, name, ..
} => {
let (inner_eval, subproof) = match evalcheck_proof {
EvalcheckProof::ZeroPadded(eval, subproof) => (eval, subproof),
_ => return Err(VerificationError::SubproofMismatch.into()),
};
let inner_n_vars = inner.n_vars();
let (subclaim_eval_point, zs) = eval_point.split_at(inner_n_vars);
let mut extrapolate_eval = inner_eval;
for z in zs {
extrapolate_eval =
extrapolate_line_scalar::<F, F>(F::ZERO, extrapolate_eval, *z);
}
if extrapolate_eval != eval {
return Err(VerificationError::IncorrectEvaluation(
name.unwrap_or(id.to_string()),
)
.into());
}
self.verify_multilinear_subclaim(
inner_eval,
*subproof,
(*inner).clone(),
subclaim_eval_point,
)?;
}
}
Ok(())
}
fn verify_multilinear_subclaim(
&mut self,
eval: F,
subproof: EvalcheckProof<F>,
poly: MultilinearPolyOracle<F>,
eval_point: &[F],
) -> Result<(), Error> {
let subclaim = EvalcheckMultilinearClaim {
poly,
eval_point: eval_point.into(),
eval,
};
self.verify_multilinear(subclaim, subproof)
}
}