binius_core/protocols/fri/
common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// Copyright 2024-2025 Irreducible Inc.

use std::marker::PhantomData;

use binius_field::{util::inner_product_unchecked, BinaryField, ExtensionField, PackedField};
use binius_math::extrapolate_line_scalar;
use binius_ntt::AdditiveNTT;
use binius_utils::bail;
use getset::{CopyGetters, Getters};

use crate::{
	linear_code::LinearCode, merkle_tree::MerkleTreeScheme, protocols::fri::Error,
	reed_solomon::reed_solomon::ReedSolomonCode,
};

/// Calculate fold of `values` at `index` with `r` random coefficient.
///
/// See [DP24], Def. 3.6.
///
/// [DP24]: <https://eprint.iacr.org/2024/504>
#[inline]
fn fold_pair<F, FS>(
	rs_code: &ReedSolomonCode<FS>,
	round: usize,
	index: usize,
	values: (F, F),
	r: F,
) -> F
where
	F: BinaryField + ExtensionField<FS>,
	FS: BinaryField,
{
	// Perform inverse additive NTT butterfly
	let t = rs_code.get_ntt().get_subspace_eval(round, index);
	let (mut u, mut v) = values;
	v += u;
	u += v * t;
	extrapolate_line_scalar(u, v, r)
}

/// Calculate FRI fold of `values` at a `chunk_index` with random folding challenges.
///
/// REQUIRES:
/// - `folding_challenges` is not empty.
/// - `values.len() == 1 << folding_challenges.len()`.
/// - `scratch_buffer.len() == values.len()`.
/// - `start_round + folding_challenges.len() - 1 < rs_code.log_dim()`.
///
/// NB: This method is on a hot path and does not perform any allocations or
/// precondition checks.
///
/// See [DP24], Def. 3.6 and Lemma 3.9 for more details.
///
/// [DP24]: <https://eprint.iacr.org/2024/504>
#[inline]
pub fn fold_chunk<F, FS>(
	rs_code: &ReedSolomonCode<FS>,
	start_round: usize,
	chunk_index: usize,
	values: &[F],
	folding_challenges: &[F],
	scratch_buffer: &mut [F],
) -> F
where
	F: BinaryField + ExtensionField<FS>,
	FS: BinaryField,
{
	// Preconditions
	debug_assert!(!folding_challenges.is_empty());
	debug_assert!(start_round + folding_challenges.len() <= rs_code.log_dim());
	debug_assert_eq!(values.len(), 1 << folding_challenges.len());
	debug_assert!(scratch_buffer.len() >= values.len());

	// Fold the chunk with the folding challenges one by one
	for n_challenges_processed in 0..folding_challenges.len() {
		let n_remaining_challenges = folding_challenges.len() - n_challenges_processed;
		let scratch_buffer_len = values.len() >> n_challenges_processed;
		let new_scratch_buffer_len = scratch_buffer_len >> 1;
		let round = start_round + n_challenges_processed;
		let r = folding_challenges[n_challenges_processed];
		let index_start = chunk_index << (n_remaining_challenges - 1);

		// Fold the (2i) and (2i+1)th cells of the scratch buffer in-place into the i-th cell
		if n_challenges_processed > 0 {
			(0..new_scratch_buffer_len).for_each(|index_offset| {
				let values =
					(scratch_buffer[index_offset << 1], scratch_buffer[(index_offset << 1) + 1]);
				scratch_buffer[index_offset] =
					fold_pair(rs_code, round, index_start + index_offset, values, r)
			});
		} else {
			// For the first round, we read values directly from the `values` slice.
			(0..new_scratch_buffer_len).for_each(|index_offset| {
				let values = (values[index_offset << 1], values[(index_offset << 1) + 1]);
				scratch_buffer[index_offset] =
					fold_pair(rs_code, round, index_start + index_offset, values, r)
			});
		}
	}

	scratch_buffer[0]
}

/// Calculate the fold of an interleaved chunk of values with random folding challenges.
///
/// The elements in the `values` vector are the interleaved cosets of a batch of codewords at the
/// index `coset_index`. That is, the layout of elements in the values slice is
///
/// ```text
/// [a0, b0, c0, d0, a1, b1, c1, d1, ...]
/// ```
///
/// where `a0, a1, ...` form a coset of a codeword `a`, `b0, b1, ...` form a coset of a codeword
/// `b`, and similarly for `c` and `d`.
///
/// The fold operation first folds the adjacent symbols in the slice using regular multilinear
/// tensor folding for the symbols from different cosets and FRI folding for the cosets themselves
/// using the remaining challenges.
//
/// NB: This method is on a hot path and does not perform any allocations or
/// precondition checks.
///
/// See [DP24], Def. 3.6 and Lemma 3.9 for more details.
///
/// [DP24]: <https://eprint.iacr.org/2024/504>
#[inline]
pub fn fold_interleaved_chunk<F, FS>(
	rs_code: &ReedSolomonCode<FS>,
	log_batch_size: usize,
	chunk_index: usize,
	values: &[F],
	tensor: &[F],
	fold_challenges: &[F],
	scratch_buffer: &mut [F],
) -> F
where
	F: BinaryField + ExtensionField<FS>,
	FS: BinaryField,
{
	// Preconditions
	debug_assert!(fold_challenges.len() <= rs_code.log_dim());
	debug_assert_eq!(values.len(), 1 << (log_batch_size + fold_challenges.len()));
	debug_assert_eq!(tensor.len(), 1 << log_batch_size);
	debug_assert!(scratch_buffer.len() >= 2 * (values.len() >> log_batch_size));

	// There are two types of mixing we do in this loop. Buffer 1 is populated with the
	// folding of symbols from the interleaved codewords into a single codeword. These
	// values are mixed as a regular tensor product combination. Buffer 2 is then
	// populated with `fold_chunk`, which folds a coset of a codeword using the FRI
	// folding algorithm.
	let (buffer1, buffer2) = scratch_buffer.split_at_mut(1 << fold_challenges.len());

	for (interleave_chunk, val) in values.chunks(1 << log_batch_size).zip(buffer1.iter_mut()) {
		*val = inner_product_unchecked(interleave_chunk.iter().copied(), tensor.iter().copied());
	}

	if fold_challenges.is_empty() {
		buffer1[0]
	} else {
		fold_chunk(rs_code, 0, chunk_index, buffer1, fold_challenges, buffer2)
	}
}

/// Parameters for an FRI interleaved code proximity protocol.
#[derive(Debug, Getters, CopyGetters)]
pub struct FRIParams<F, FA>
where
	F: BinaryField,
	FA: BinaryField,
{
	/// The Reed-Solomon code the verifier is testing proximity to.
	#[getset(get = "pub")]
	rs_code: ReedSolomonCode<FA>,
	/// Vector commitment scheme for the codeword oracle.
	#[getset(get_copy = "pub")]
	log_batch_size: usize,
	/// The reduction arities between each oracle sent to the verifier.
	fold_arities: Vec<usize>,
	/// The number oracle consistency queries required during the query phase.
	#[getset(get_copy = "pub")]
	n_test_queries: usize,
	_marker: PhantomData<F>,
}

impl<F, FA> FRIParams<F, FA>
where
	F: BinaryField + ExtensionField<FA>,
	FA: BinaryField,
{
	pub fn new(
		rs_code: ReedSolomonCode<FA>,
		log_batch_size: usize,
		fold_arities: Vec<usize>,
		n_test_queries: usize,
	) -> Result<Self, Error> {
		if fold_arities.iter().sum::<usize>() >= rs_code.log_dim() + log_batch_size {
			bail!(Error::InvalidFoldAritySequence)
		}

		Ok(Self {
			rs_code,
			log_batch_size,
			fold_arities,
			n_test_queries,
			_marker: PhantomData,
		})
	}

	pub fn n_fold_rounds(&self) -> usize {
		self.rs_code.log_dim() + self.log_batch_size
	}

	/// Number of oracles sent during the fold rounds.
	pub fn n_oracles(&self) -> usize {
		self.fold_arities.len()
	}

	/// Number of bits in the query indices sampled during the query phase.
	pub fn index_bits(&self) -> usize {
		self.fold_arities
			.first()
			.map(|arity| self.log_len() - arity)
			// If there is no folding, there are no random queries either
			.unwrap_or(0)
	}

	/// Number of folding challenges the verifier sends after receiving the last oracle.
	pub fn n_final_challenges(&self) -> usize {
		self.n_fold_rounds() - self.fold_arities.iter().sum::<usize>()
	}

	/// The reduction arities between each oracle sent to the verifier.
	pub fn fold_arities(&self) -> &[usize] {
		&self.fold_arities
	}

	/// The binary logarithm of the length of the initial oracle.
	pub fn log_len(&self) -> usize {
		self.rs_code().log_len() + self.log_batch_size()
	}
}

/// This layer allows minimizing the proof size.
pub fn vcs_optimal_layers_depths_iter<'a, F, FA, VCS>(
	fri_params: &'a FRIParams<F, FA>,
	vcs: &'a VCS,
) -> impl Iterator<Item = usize> + 'a
where
	VCS: MerkleTreeScheme<F>,
	F: BinaryField + ExtensionField<FA>,
	FA: BinaryField,
{
	fri_params
		.fold_arities()
		.iter()
		.scan(fri_params.log_len(), |log_n_cosets, arity| {
			*log_n_cosets -= arity;
			Some(vcs.optimal_verify_layer(fri_params.n_test_queries(), *log_n_cosets))
		})
}

/// The type of the termination round codeword in the FRI protocol.
pub type TerminateCodeword<F> = Vec<F>;

/// Calculates the number of test queries required to achieve a target security level.
///
/// Throws [`Error::ParameterError`] if the security level is unattainable given the code
/// parameters.
pub fn calculate_n_test_queries<F, PS>(
	security_bits: usize,
	code: &ReedSolomonCode<PS>,
) -> Result<usize, Error>
where
	F: BinaryField + ExtensionField<PS::Scalar>,
	PS: PackedField<Scalar: BinaryField>,
{
	let per_query_err = 0.5 * (1f64 + 2.0f64.powi(-(code.log_inv_rate() as i32)));
	let mut n_queries = (-(security_bits as f64) / per_query_err.log2()).ceil() as usize;
	for _ in 0..10 {
		if calculate_error_bound::<F, _>(code, n_queries) >= security_bits {
			return Ok(n_queries);
		}
		n_queries += 1;
	}
	Err(Error::ParameterError)
}

fn calculate_error_bound<F, PS>(code: &ReedSolomonCode<PS>, n_queries: usize) -> usize
where
	F: BinaryField + ExtensionField<PS::Scalar>,
	PS: PackedField<Scalar: BinaryField>,
{
	let field_size = 2.0_f64.powi(F::N_BITS as i32);
	// ℓ' / |T_{τ}|
	let sumcheck_err = code.log_dim() as f64 / field_size;
	// 2^{ℓ' + R} / |T_{τ}|
	let folding_err = code.len() as f64 / field_size;
	let per_query_err = 0.5 * (1.0 + 2.0f64.powi(-(code.log_inv_rate() as i32)));
	let query_err = per_query_err.powi(n_queries as i32);
	let total_err = sumcheck_err + folding_err + query_err;
	-total_err.log2() as usize
}

/// Heuristic for estimating the optimal FRI folding arity that minimizes proof size.
///
/// `log_block_length` is the binary logarithm of the  block length of the Reed–Solomon code.
pub fn estimate_optimal_arity(
	log_block_length: usize,
	digest_size: usize,
	field_size: usize,
) -> usize {
	(1..=log_block_length)
		.map(|arity| {
			(
				// for given arity, return a tuple (arity, estimate of query_proof_size).
				// this estimate is basd on the following approximation of a single query_proof_size, where $\vartheta$ is the arity:
				// $\big((n-\vartheta) + (n-2\vartheta) + \ldots\big)\text{digest_size} + \frac{n-\vartheta}{\vartheta}2^{\vartheta}\text{field_size}.$
				arity,
				((log_block_length) / 2 * digest_size + (1 << arity) * field_size)
					* (log_block_length - arity)
					/ arity,
			)
		})
		// now scan and terminate the iterator when query_proof_size increases.
		.scan(None, |old: &mut Option<(usize, usize)>, new| {
			let should_continue = !matches!(*old, Some(ref old) if new.1 > old.1);
			*old = Some(new);
			if should_continue {
				Some(new)
			} else {
				None
			}
		})
		.last()
		.map(|(arity, _)| arity)
		.unwrap_or(1)
}

#[cfg(test)]
mod tests {
	use assert_matches::assert_matches;
	use binius_field::{BinaryField128b, BinaryField32b};
	use binius_ntt::NTTOptions;

	use super::*;

	#[test]
	fn test_calculate_n_test_queries() {
		let security_bits = 96;
		let rs_code = ReedSolomonCode::new(28, 1, NTTOptions::default()).unwrap();
		let n_test_queries =
			calculate_n_test_queries::<BinaryField128b, BinaryField32b>(security_bits, &rs_code)
				.unwrap();
		assert_eq!(n_test_queries, 232);

		let rs_code = ReedSolomonCode::new(28, 2, NTTOptions::default()).unwrap();
		let n_test_queries =
			calculate_n_test_queries::<BinaryField128b, BinaryField32b>(security_bits, &rs_code)
				.unwrap();
		assert_eq!(n_test_queries, 143);
	}

	#[test]
	fn test_calculate_n_test_queries_unsatisfiable() {
		let security_bits = 128;
		let rs_code = ReedSolomonCode::new(28, 1, NTTOptions::default()).unwrap();
		assert_matches!(
			calculate_n_test_queries::<BinaryField128b, BinaryField32b>(security_bits, &rs_code),
			Err(Error::ParameterError)
		);
	}

	#[test]
	fn test_estimate_optimal_arity() {
		let field_size = 128;
		for log_block_length in 22..35 {
			let digest_size = 256;
			assert_eq!(estimate_optimal_arity(log_block_length, digest_size, field_size), 4);
		}

		for log_block_length in 22..28 {
			let digest_size = 1024;
			assert_eq!(estimate_optimal_arity(log_block_length, digest_size, field_size), 6);
		}
	}
}