binius_core/protocols/gkr_gpa/
prove.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2024-2025 Irreducible Inc.

use binius_field::{
	ExtensionField, Field, PackedExtension, PackedField, PackedFieldIndexable, TowerField,
};
use binius_hal::ComputationBackend;
use binius_math::{
	extrapolate_line_scalar, EvaluationDomainFactory, MLEDirectAdapter, MultilinearExtension,
	MultilinearPoly,
};
use binius_utils::{
	bail,
	sorting::{stable_sort, unsort},
};
use tracing::instrument;

use super::{
	gkr_gpa::{GrandProductBatchProveOutput, LayerClaim},
	gpa_sumcheck::prove::GPAProver,
	packed_field_storage::PackedFieldStorage,
	Error, GrandProductClaim, GrandProductWitness,
};
use crate::{
	composition::{BivariateProduct, IndexComposition},
	fiat_shamir::CanSample,
	protocols::sumcheck::{self, CompositeSumClaim},
	transcript::CanWrite,
};

/// Proves batch reduction turning each GrandProductClaim into an EvalcheckMultilinearClaim
///
/// REQUIRES:
/// * witnesses and claims are of the same length
/// * The ith witness corresponds to the ith claim
#[instrument(skip_all, name = "gkr_gpa::batch_prove", level = "debug")]
pub fn batch_prove<F, P, FDomain, Transcript, Backend>(
	witnesses: impl IntoIterator<Item = GrandProductWitness<P>>,
	claims: &[GrandProductClaim<F>],
	evaluation_domain_factory: impl EvaluationDomainFactory<FDomain>,
	mut transcript: Transcript,
	backend: &Backend,
) -> Result<GrandProductBatchProveOutput<F>, Error>
where
	F: TowerField,
	P: PackedFieldIndexable<Scalar = F> + PackedExtension<FDomain>,
	FDomain: Field,
	P::Scalar: Field + ExtensionField<FDomain>,
	Transcript: CanSample<F> + CanWrite,
	Backend: ComputationBackend,
{
	//  Ensure witnesses and claims are of the same length, zip them together
	// 	For each witness-claim pair, create GrandProductProver
	let witness_vec = witnesses.into_iter().collect::<Vec<_>>();

	let n_claims = claims.len();
	if n_claims == 0 {
		return Ok(GrandProductBatchProveOutput::default());
	}
	if witness_vec.len() != n_claims {
		bail!(Error::MismatchedWitnessClaimLength);
	}

	// Create a vector of GrandProductProverStates
	let provers_vec = witness_vec
		.iter()
		.zip(claims)
		.map(|(witness, claim)| GrandProductProverState::new(claim, witness, backend))
		.collect::<Result<Vec<_>, _>>()?;

	let (original_indices, mut sorted_provers) =
		stable_sort(provers_vec, |prover| prover.input_vars(), true);

	let max_n_vars = sorted_provers
		.first()
		.expect("sorted_provers is not empty by invariant")
		.input_vars();

	let mut reverse_sorted_final_layer_claims = Vec::with_capacity(n_claims);

	for layer_no in 0..max_n_vars {
		// Step 1: Process finished provers
		process_finished_provers(
			layer_no,
			&mut sorted_provers,
			&mut reverse_sorted_final_layer_claims,
		)?;

		// Now we must create the batch layer proof for the kth to k+1th layer reduction

		// Step 2: Create sumcheck batch proof
		let batch_sumcheck_output = {
			let gpa_sumcheck_prover = GrandProductProverState::stage_gpa_sumcheck_provers(
				&sorted_provers,
				evaluation_domain_factory.clone(),
			)?;

			sumcheck::batch_prove(vec![gpa_sumcheck_prover], &mut transcript)?
		};

		// Step 3: Sample a challenge for the next layer
		let gpa_challenge = transcript.sample();

		// Step 4: Finalize each prover to update its internal current_layer_claim
		for (i, prover) in sorted_provers.iter_mut().enumerate() {
			prover.finalize_batch_layer_proof(
				batch_sumcheck_output.multilinear_evals[0][2 * i],
				batch_sumcheck_output.multilinear_evals[0][2 * i + 1],
				batch_sumcheck_output.challenges.clone(),
				gpa_challenge,
			)?;
		}
	}
	process_finished_provers(
		max_n_vars,
		&mut sorted_provers,
		&mut reverse_sorted_final_layer_claims,
	)?;

	debug_assert!(sorted_provers.is_empty());
	debug_assert_eq!(reverse_sorted_final_layer_claims.len(), n_claims);

	reverse_sorted_final_layer_claims.reverse();
	let sorted_final_layer_claim = reverse_sorted_final_layer_claims;

	let final_layer_claims = unsort(original_indices, sorted_final_layer_claim);

	Ok(GrandProductBatchProveOutput { final_layer_claims })
}

fn process_finished_provers<F, P, Backend>(
	layer_no: usize,
	sorted_provers: &mut Vec<GrandProductProverState<'_, F, P, Backend>>,
	reverse_sorted_final_layer_claims: &mut Vec<LayerClaim<F>>,
) -> Result<(), Error>
where
	P: PackedFieldIndexable<Scalar = F>,
	F: Field + From<P::Scalar>,
	P::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	while let Some(prover) = sorted_provers.last() {
		if prover.input_vars() != layer_no {
			break;
		}
		debug_assert!(layer_no > 0);
		let finished_prover = sorted_provers.pop().expect("not empty");
		let final_layer_claim = finished_prover.finalize()?;
		reverse_sorted_final_layer_claims.push(final_layer_claim);
	}

	Ok(())
}

/// GPA protocol prover state
///
/// Coordinates the proving of a grand product claim before and after
/// the sumcheck-based layer reductions.
#[derive(Debug)]
struct GrandProductProverState<'a, F, P, Backend>
where
	F: Field + From<P::Scalar>,
	P: PackedField,
	P::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	n_vars: usize,
	// Layers of the product circuit as multilinear polynomials
	// The ith element is the ith layer of the product circuit
	layers: Vec<MLEDirectAdapter<P, PackedFieldStorage<'a, P>>>,
	// The ith element consists of a tuple of the
	// first and second halves of the (i+1)th layer of the product circuit
	next_layer_halves: Vec<[MLEDirectAdapter<P, PackedFieldStorage<'a, P>>; 2]>,
	// The current claim about a layer multilinear of the product circuit
	current_layer_claim: LayerClaim<F>,

	backend: Backend,
}

impl<'a, F, P, Backend> GrandProductProverState<'a, F, P, Backend>
where
	F: Field + From<P::Scalar>,
	P: PackedFieldIndexable<Scalar = F>,
	P::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	/// Create a new GrandProductProverState
	fn new(
		claim: &GrandProductClaim<F>,
		witness: &'a GrandProductWitness<P>,
		backend: Backend,
	) -> Result<Self, Error> {
		let n_vars = claim.n_vars;
		if n_vars != witness.n_vars() || witness.grand_product_evaluation() != claim.product {
			bail!(Error::ProverClaimWitnessMismatch);
		}

		// Build multilinear polynomials from circuit evaluations
		let n_layers = n_vars + 1;
		let next_layer_halves = (1..n_layers)
			.map(|i| {
				let (left_evals, right_evals) = witness.ith_layer_eval_halves(i)?;
				let left = MultilinearExtension::try_from(left_evals)?;
				let right = MultilinearExtension::try_from(right_evals)?;
				Ok([left, right].map(MLEDirectAdapter::from))
			})
			.collect::<Result<Vec<_>, Error>>()?;

		let layers = (0..n_layers)
			.map(|i| {
				let ith_layer_evals = witness.ith_layer_evals(i)?;
				let ith_layer_evals = if P::LOG_WIDTH < i {
					PackedFieldStorage::from(ith_layer_evals)
				} else {
					debug_assert_eq!(ith_layer_evals.len(), 1);
					PackedFieldStorage::new_inline(ith_layer_evals[0].iter().take(1 << i))
						.expect("length is a power of 2")
				};

				let mle = MultilinearExtension::try_from(ith_layer_evals)?;
				Ok(mle.into())
			})
			.collect::<Result<Vec<_>, Error>>()?;

		debug_assert_eq!(next_layer_halves.len(), n_vars);
		debug_assert_eq!(layers.len(), n_vars + 1);

		// Initialize Layer Claim
		let layer_claim = LayerClaim {
			eval_point: vec![],
			eval: claim.product,
		};

		// Return new GrandProductProver and the common product
		Ok(Self {
			n_vars,
			next_layer_halves,
			layers,
			current_layer_claim: layer_claim,
			backend,
		})
	}

	fn input_vars(&self) -> usize {
		self.n_vars
	}

	fn current_layer_no(&self) -> usize {
		self.current_layer_claim.eval_point.len()
	}

	#[allow(clippy::type_complexity)]
	#[instrument(skip_all, level = "debug")]
	fn stage_gpa_sumcheck_provers<FDomain>(
		provers: &[Self],
		evaluation_domain_factory: impl EvaluationDomainFactory<FDomain>,
	) -> Result<
		GPAProver<
			FDomain,
			P,
			IndexComposition<BivariateProduct, 2>,
			impl MultilinearPoly<P> + Send + Sync + 'a,
			Backend,
		>,
		Error,
	>
	where
		FDomain: Field,
		P: PackedExtension<FDomain>,
		F: ExtensionField<FDomain>,
	{
		// test same layer
		let Some(first_prover) = provers.first() else {
			unreachable!();
		};

		// construct witness
		let n_claims = provers.len();
		let n_multilinears = provers.len() * 2;
		let current_layer_no = first_prover.current_layer_no();

		let mut composite_claims = Vec::with_capacity(n_claims);
		let mut multilinears = Vec::with_capacity(n_multilinears);

		for (i, prover) in provers.iter().enumerate() {
			let indices = [2 * i, 2 * i + 1];

			let composite_claim = CompositeSumClaim {
				sum: prover.current_layer_claim.eval,
				composition: IndexComposition::new(n_multilinears, indices, BivariateProduct {})?,
			};

			composite_claims.push(composite_claim);
			multilinears.extend(prover.next_layer_halves[current_layer_no].clone());
		}

		let first_layer_mle_advice = provers
			.iter()
			.map(|prover| prover.layers[current_layer_no].clone())
			.collect::<Vec<_>>();

		Ok(GPAProver::new(
			multilinears,
			Some(first_layer_mle_advice),
			composite_claims,
			evaluation_domain_factory,
			&first_prover.current_layer_claim.eval_point,
			&first_prover.backend,
		)?)
	}

	fn finalize_batch_layer_proof(
		&mut self,
		zero_eval: F,
		one_eval: F,
		sumcheck_challenge: Vec<F>,
		gpa_challenge: F,
	) -> Result<(), Error> {
		if self.current_layer_no() >= self.input_vars() {
			bail!(Error::TooManyRounds);
		}
		let new_eval = extrapolate_line_scalar(zero_eval, one_eval, gpa_challenge);
		let mut layer_challenge = sumcheck_challenge;
		layer_challenge.push(gpa_challenge);

		self.current_layer_claim = LayerClaim {
			eval_point: layer_challenge,
			eval: new_eval,
		};

		Ok(())
	}

	fn finalize(self) -> Result<LayerClaim<F>, Error> {
		if self.current_layer_no() != self.input_vars() {
			bail!(Error::PrematureFinalize);
		}

		let final_layer_claim = LayerClaim {
			eval_point: self.current_layer_claim.eval_point,
			eval: self.current_layer_claim.eval,
		};
		Ok(final_layer_claim)
	}
}