binius_core/protocols/sumcheck/common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
// Copyright 2024-2025 Irreducible Inc.
use std::ops::{Add, AddAssign, Mul, MulAssign};
use binius_field::{
util::{inner_product_unchecked, powers},
ExtensionField, Field, PackedField,
};
use binius_math::{CompositionPolyOS, MultilinearPoly};
use binius_utils::bail;
use getset::{CopyGetters, Getters};
use tracing::instrument;
use super::error::Error;
/// A claim about the sum of the values of a multilinear composite polynomial over the boolean
/// hypercube.
///
/// This struct contains a composition polynomial and a claimed sum and implicitly refers to a
/// sequence of multilinears that are composed. This is typically embedded within a
/// [`SumcheckClaim`], which contains more metadata about the multilinears (eg. the number of
/// variables they are defined over).
#[derive(Debug, Clone, Getters, CopyGetters)]
pub struct CompositeSumClaim<F: Field, Composition> {
pub composition: Composition,
pub sum: F,
}
/// A group of claims about the sum of the values of multilinear composite polynomials over the
/// boolean hypercube.
///
/// All polynomials in the group of claims are compositions of the same sequence of multilinear
/// polynomials. By defining [`SumcheckClaim`] in this way, the sumcheck protocol can implement
/// efficient batch proving and verification and reduce to a set of multilinear evaluations of the
/// same polynomials. In other words, this grouping deduplicates prover work and proof data that
/// would be redundant in a more naive implementation.
#[derive(Debug, Clone, CopyGetters)]
pub struct SumcheckClaim<F: Field, C> {
#[getset(get_copy = "pub")]
n_vars: usize,
#[getset(get_copy = "pub")]
n_multilinears: usize,
composite_sums: Vec<CompositeSumClaim<F, C>>,
}
impl<F: Field, Composition> SumcheckClaim<F, Composition>
where
Composition: CompositionPolyOS<F>,
{
/// Constructs a new sumcheck claim.
///
/// ## Throws
///
/// * [`Error::InvalidComposition`] if any of the composition polynomials in the composite
/// claims vector do not have their number of variables equal to `n_multilinears`
pub fn new(
n_vars: usize,
n_multilinears: usize,
composite_sums: Vec<CompositeSumClaim<F, Composition>>,
) -> Result<Self, Error> {
for CompositeSumClaim {
ref composition, ..
} in composite_sums.iter()
{
if composition.n_vars() != n_multilinears {
bail!(Error::InvalidComposition {
actual: composition.n_vars(),
expected: n_multilinears,
});
}
}
Ok(Self {
n_vars,
n_multilinears,
composite_sums,
})
}
/// Returns the maximum individual degree of all composite polynomials.
pub fn max_individual_degree(&self) -> usize {
self.composite_sums
.iter()
.map(|composite_sum| composite_sum.composition.degree())
.max()
.unwrap_or(0)
}
pub fn composite_sums(&self) -> &[CompositeSumClaim<F, Composition>] {
&self.composite_sums
}
}
/// A univariate polynomial in monomial basis.
///
/// The coefficient at position `i` in the inner vector corresponds to the term $X^i$.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct RoundCoeffs<F: Field>(pub Vec<F>);
impl<F: Field> RoundCoeffs<F> {
/// Representation in an isomorphic field
pub fn isomorphic<FI: Field + From<F>>(self) -> RoundCoeffs<FI> {
RoundCoeffs(self.0.into_iter().map(Into::into).collect())
}
/// Truncate one coefficient from the polynomial to a more compact round proof.
pub fn truncate(mut self) -> RoundProof<F> {
let new_len = self.0.len().saturating_sub(1);
self.0.truncate(new_len);
RoundProof(self)
}
}
impl<F: Field> Add<&Self> for RoundCoeffs<F> {
type Output = RoundCoeffs<F>;
fn add(mut self, rhs: &Self) -> Self::Output {
self += rhs;
self
}
}
impl<F: Field> AddAssign<&Self> for RoundCoeffs<F> {
fn add_assign(&mut self, rhs: &Self) {
if self.0.len() < rhs.0.len() {
self.0.resize(rhs.0.len(), F::ZERO);
}
for (lhs_i, &rhs_i) in self.0.iter_mut().zip(rhs.0.iter()) {
*lhs_i += rhs_i;
}
}
}
impl<F: Field> Mul<F> for RoundCoeffs<F> {
type Output = RoundCoeffs<F>;
fn mul(mut self, rhs: F) -> Self::Output {
self *= rhs;
self
}
}
impl<F: Field> MulAssign<F> for RoundCoeffs<F> {
fn mul_assign(&mut self, rhs: F) {
for coeff in self.0.iter_mut() {
*coeff *= rhs;
}
}
}
/// A sumcheck round proof is a univariate polynomial in monomial basis with the coefficient of the
/// highest-degree term truncated off.
///
/// Since the verifier knows the claimed sum of the polynomial values at the points 0 and 1, the
/// high-degree term coefficient can be easily recovered. Truncating the coefficient off saves a
/// small amount of proof data.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct RoundProof<F: Field>(pub RoundCoeffs<F>);
impl<F: Field> RoundProof<F> {
/// Recovers all univariate polynomial coefficients from the compressed round proof.
///
/// The prover has sent coefficients for the purported ith round polynomial
/// $r_i(X) = \sum_{j=0}^d a_j * X^j$.
/// However, the prover has not sent the highest degree coefficient $a_d$.
/// The verifier will need to recover this missing coefficient.
///
/// Let $s$ denote the current round's claimed sum.
/// The verifier expects the round polynomial $r_i$ to satisfy the identity
/// $s = r_i(0) + r_i(1)$.
/// Using
/// $r_i(0) = a_0$
/// $r_i(1) = \sum_{j=0}^d a_j$
/// There is a unique $a_d$ that allows $r_i$ to satisfy the above identity.
/// Specifically
/// $a_d = s - a_0 - \sum_{j=0}^{d-1} a_j$
///
/// Not sending the whole round polynomial is an optimization.
/// In the unoptimized version of the protocol, the verifier will halt and reject
/// if given a round polynomial that does not satisfy the above identity.
pub fn recover(self, sum: F) -> RoundCoeffs<F> {
let RoundProof(RoundCoeffs(mut coeffs)) = self;
let first_coeff = coeffs.first().copied().unwrap_or(F::ZERO);
let last_coeff = sum - first_coeff - coeffs.iter().sum::<F>();
coeffs.push(last_coeff);
RoundCoeffs(coeffs)
}
/// The truncated polynomial coefficients.
pub fn coeffs(&self) -> &[F] {
&self.0 .0
}
/// Representation in an isomorphic field
pub fn isomorphic<FI: Field + From<F>>(self) -> RoundProof<FI> {
RoundProof(self.0.isomorphic())
}
}
/// A sumcheck batch proof.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct Proof<F: Field> {
/// The round proofs for each round.
pub rounds: Vec<RoundProof<F>>,
/// The claimed evaluations of all multilinears at the point defined by the sumcheck verifier
/// challenges.
///
/// The structure is a vector of vectors of field elements. Each entry of the outer vector
/// corresponds to one [`SumcheckClaim`] in a batch. Each inner vector contains the evaluations
/// of the multilinears referenced by that claim.
pub multilinear_evals: Vec<Vec<F>>,
}
#[derive(Debug, PartialEq, Eq)]
pub struct BatchSumcheckOutput<F: Field> {
pub challenges: Vec<F>,
pub multilinear_evals: Vec<Vec<F>>,
}
impl<F: Field> BatchSumcheckOutput<F> {
pub fn isomorphic<FI: Field + From<F>>(self) -> BatchSumcheckOutput<FI> {
BatchSumcheckOutput {
challenges: self.challenges.into_iter().map(Into::into).collect(),
multilinear_evals: self
.multilinear_evals
.into_iter()
.map(|prover_evals| prover_evals.into_iter().map(Into::into).collect())
.collect(),
}
}
}
/// Constructs a switchover function thaw returns the round number where folded multilinear is at
/// least 2^k times smaller (in bytes) than the original, or 1 when not applicable.
pub fn standard_switchover_heuristic(k: isize) -> impl Fn(usize) -> usize + Copy {
move |extension_degree: usize| {
((extension_degree.ilog2() as isize + k).max(0) as usize).saturating_sub(1)
}
}
/// Sumcheck switchover heuristic that begins folding immediately in the first round.
pub fn immediate_switchover_heuristic(_extension_degree: usize) -> usize {
0
}
/// Determine switchover rounds for a slice of multilinears.
#[instrument(skip_all, level = "debug")]
pub fn determine_switchovers<P, M>(
multilinears: &[M],
switchover_fn: impl Fn(usize) -> usize,
) -> Vec<usize>
where
P: PackedField,
M: MultilinearPoly<P>,
{
// TODO: This can be computed in parallel.
multilinears
.iter()
.map(|multilinear| switchover_fn(1 << multilinear.log_extension_degree()))
.collect()
}
/// Check that all multilinears in a slice are of the same size.
pub fn equal_n_vars_check<P, M>(multilinears: &[M]) -> Result<usize, Error>
where
P: PackedField,
M: MultilinearPoly<P>,
{
let n_vars = multilinears
.first()
.map(|multilinear| multilinear.n_vars())
.unwrap_or_default();
for multilinear in multilinears {
if multilinear.n_vars() != n_vars {
bail!(Error::NumberOfVariablesMismatch);
}
}
Ok(n_vars)
}
/// Check that evaluations of all multilinears can actually be embedded in the scalar
/// type of small field `PBase`.
///
/// Returns binary logarithm of the embedding degree.
pub fn small_field_embedding_degree_check<PBase, P, M>(multilinears: &[M]) -> Result<(), Error>
where
PBase: PackedField,
P: PackedField<Scalar: ExtensionField<PBase::Scalar>>,
M: MultilinearPoly<P>,
{
let log_embedding_degree = <P::Scalar as ExtensionField<PBase::Scalar>>::LOG_DEGREE;
for multilinear in multilinears {
if multilinear.log_extension_degree() < log_embedding_degree {
bail!(Error::MultilinearEvalsCannotBeEmbeddedInBaseField);
}
}
Ok(())
}
/// Multiply a sequence of field elements by the consecutive powers of `batch_coeff`
pub fn batch_weighted_value<F: Field>(batch_coeff: F, values: impl Iterator<Item = F>) -> F {
// Multiplying by batch_coeff is important for security!
batch_coeff * inner_product_unchecked(powers(batch_coeff), values)
}