binius_core/protocols/sumcheck/prove/
batch_prove.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright 2024-2025 Irreducible Inc.

use std::iter;

use binius_field::{Field, TowerField};
use binius_utils::{bail, sorting::is_sorted_ascending};
use tracing::instrument;

use crate::{
	fiat_shamir::CanSample,
	protocols::sumcheck::{
		common::{BatchSumcheckOutput, RoundCoeffs},
		error::Error,
	},
	transcript::CanWrite,
};

/// A sumcheck prover with a round-by-round execution interface.
///
/// Sumcheck prover logic is accessed via a trait because important optimizations are available
/// depending on the structure of the multivariate polynomial that the protocol targets. For
/// example, [Gruen24] observes a significant optimization available to the sumcheck prover when
/// the multivariate is the product of a multilinear composite and an equality indicator
/// polynomial, which arises in the zerocheck protocol.
///
/// The trait exposes a round-by-round interface so that protocol execution logic that drives the
/// prover can interleave the executions of the interactive protocol, for example in the case of
/// batching several sumcheck protocols.
///
/// The caller must make a specific sequence of calls to the provers. For a prover where
/// [`Self::n_vars`] is $n$, the caller must call [`Self::execute`] and then [`Self::fold`] $n$
/// times, and finally call [`Self::finish`]. If the calls aren't made in that order, the caller
/// will get an error result.
///
/// This trait is object-safe.
///
/// [Gruen24]: <https://eprint.iacr.org/2024/108>
pub trait SumcheckProver<F: Field> {
	/// The number of variables in the multivariate polynomial.
	fn n_vars(&self) -> usize;

	/// Computes the prover message for this round as a univariate polynomial.
	///
	/// The prover message mixes the univariate polynomials of the underlying composites using the
	/// powers of `batch_coeff`.
	///
	/// Let $alpha$ refer to `batch_coeff`. If [`Self::fold`] has already been called on the prover
	/// with the values $r_0$, ..., $r_{k-1}$ and the sumcheck prover is proving the sums of the
	/// composite polynomials $C_0, ..., C_{m-1}$, then the output of this method will be the
	/// polynomial
	///
	/// $$
	/// \sum_{v \in B_{n - k - 1}} \sum_{i=0}^{m-1} \alpha^i C_i(r_0, ..., r_{k-1}, X, \{v\})
	/// $$
	fn execute(&mut self, batch_coeff: F) -> Result<RoundCoeffs<F>, Error>;

	/// Folds the sumcheck multilinears with a new verifier challenge.
	fn fold(&mut self, challenge: F) -> Result<(), Error>;

	/// Finishes the sumcheck proving protocol and returns the evaluations of all multilinears at
	/// the challenge point.
	fn finish(self: Box<Self>) -> Result<Vec<F>, Error>;
}

// NB: auto_impl does not currently handle ?Sized bound on Box<Self> receivers correctly.
impl<F: Field, Prover: SumcheckProver<F> + ?Sized> SumcheckProver<F> for Box<Prover> {
	fn n_vars(&self) -> usize {
		(**self).n_vars()
	}

	fn execute(&mut self, batch_coeff: F) -> Result<RoundCoeffs<F>, Error> {
		(**self).execute(batch_coeff)
	}

	fn fold(&mut self, challenge: F) -> Result<(), Error> {
		(**self).fold(challenge)
	}

	fn finish(self: Box<Self>) -> Result<Vec<F>, Error> {
		(*self).finish()
	}
}

/// Prove a batched sumcheck protocol execution.
///
/// The sumcheck protocol over can be batched over multiple instances by taking random linear
/// combinations over the claimed sums and polynomials. See
/// [`crate::protocols::sumcheck::batch_verify`] for more details.
///
/// The provers in the `provers` parameter must in the same order as the corresponding claims
/// provided to [`crate::protocols::sumcheck::batch_verify`] during proof verification.
#[instrument(skip_all, name = "sumcheck::batch_prove")]
pub fn batch_prove<F, Prover, Transcript>(
	provers: Vec<Prover>,
	transcript: Transcript,
) -> Result<BatchSumcheckOutput<F>, Error>
where
	F: TowerField,
	Prover: SumcheckProver<F>,
	Transcript: CanSample<F> + CanWrite,
{
	let start = BatchProveStart {
		batch_coeffs: Vec::new(),
		reduction_provers: Vec::<Prover>::new(),
	};

	batch_prove_with_start(start, provers, transcript)
}

/// A struct describing the starting state of batched sumcheck prove invocation.
#[derive(Debug)]
pub struct BatchProveStart<F: Field, Prover> {
	/// Batching coefficients for the already batched provers.
	pub batch_coeffs: Vec<F>,
	/// Reduced provers which can complete sumchecks from an intermediate state.
	pub reduction_provers: Vec<Prover>,
}

/// Prove a batched sumcheck protocol execution, but after some rounds have been processed.
#[instrument(skip_all, name = "sumcheck::batch_prove")]
pub fn batch_prove_with_start<F, Prover, Transcript>(
	start: BatchProveStart<F, Prover>,
	mut provers: Vec<Prover>,
	mut transcript: Transcript,
) -> Result<BatchSumcheckOutput<F>, Error>
where
	F: TowerField,
	Prover: SumcheckProver<F>,
	Transcript: CanSample<F> + CanWrite,
{
	let BatchProveStart {
		mut batch_coeffs,
		reduction_provers,
	} = start;

	provers.splice(0..0, reduction_provers);

	if provers.is_empty() {
		return Ok(BatchSumcheckOutput {
			challenges: Vec::new(),
			multilinear_evals: Vec::new(),
		});
	}

	// Check that the provers are in descending order by n_vars
	if !is_sorted_ascending(provers.iter().map(|prover| prover.n_vars()).rev()) {
		bail!(Error::ClaimsOutOfOrder);
	}

	if batch_coeffs.len() > provers.len() {
		bail!(Error::TooManyPrebatchedCoeffs);
	}

	let n_rounds = provers
		.iter()
		.map(|prover| prover.n_vars())
		.max()
		.unwrap_or(0);

	// active_index is an index into the provers slice.
	let mut active_index = batch_coeffs.len();
	let mut challenges = Vec::with_capacity(n_rounds);
	for round_no in 0..n_rounds {
		let n_vars = n_rounds - round_no;

		// Activate new provers
		while let Some(prover) = provers.get(active_index) {
			if prover.n_vars() != n_vars {
				break;
			}

			let next_batch_coeff = transcript.sample();
			batch_coeffs.push(next_batch_coeff);
			active_index += 1;
		}

		// Process the active provers
		let mut round_coeffs = RoundCoeffs::default();
		for (&batch_coeff, prover) in
			iter::zip(batch_coeffs.iter(), provers[..active_index].iter_mut())
		{
			let prover_coeffs = prover.execute(batch_coeff)?;
			round_coeffs += &(prover_coeffs * batch_coeff);
		}

		let round_proof = round_coeffs.truncate();
		transcript.write_scalar_slice(round_proof.coeffs());

		let challenge = transcript.sample();
		challenges.push(challenge);

		for prover in provers[..active_index].iter_mut() {
			prover.fold(challenge)?;
		}
	}

	// sample next_batch_coeffs for 0-variate (ie. constant) provers to match with verify
	while let Some(prover) = provers.get(active_index) {
		debug_assert_eq!(prover.n_vars(), 0);

		let _next_batch_coeff = transcript.sample();
		active_index += 1;
	}

	let multilinear_evals = provers
		.into_iter()
		.map(|prover| Box::new(prover).finish())
		.collect::<Result<Vec<_>, _>>()?;

	for multilinear_evals in multilinear_evals.iter() {
		transcript.write_scalar_slice(multilinear_evals);
	}

	let output = BatchSumcheckOutput {
		challenges,
		multilinear_evals,
	};

	Ok(output)
}