binius_core/protocols/sumcheck/prove/batch_prove.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// Copyright 2024 Irreducible Inc.
use crate::{
challenger::CanSample,
protocols::sumcheck::{
common::{BatchSumcheckOutput, Proof, RoundCoeffs},
error::Error,
},
transcript::CanWrite,
};
use binius_field::{Field, TowerField};
use binius_utils::{bail, sorting::is_sorted_ascending};
use std::iter;
use tracing::instrument;
/// A sumcheck prover with a round-by-round execution interface.
///
/// Sumcheck prover logic is accessed via a trait because important optimizations are available
/// depending on the structure of the multivariate polynomial that the protocol targets. For
/// example, [Gruen24] observes a significant optimization available to the sumcheck prover when
/// the multivariate is the product of a multilinear composite and an equality indicator
/// polynomial, which arises in the zerocheck protocol.
///
/// The trait exposes a round-by-round interface so that protocol execution logic that drives the
/// prover can interleave the executions of the interactive protocol, for example in the case of
/// batching several sumcheck protocols.
///
/// The caller must make a specific sequence of calls to the provers. For a prover where
/// [`Self::n_vars`] is $n$, the caller must call [`Self::execute`] and then [`Self::fold`] $n$
/// times, and finally call [`Self::finish`]. If the calls aren't made in that order, the caller
/// will get an error result.
///
/// This trait is object-safe.
///
/// [Gruen24]: <https://eprint.iacr.org/2024/108>
pub trait SumcheckProver<F: Field> {
/// The number of variables in the multivariate polynomial.
fn n_vars(&self) -> usize;
/// Computes the prover message for this round as a univariate polynomial.
///
/// The prover message mixes the univariate polynomials of the underlying composites using the
/// powers of `batch_coeff`.
///
/// Let $alpha$ refer to `batch_coeff`. If [`Self::fold`] has already been called on the prover
/// with the values $r_0$, ..., $r_{k-1}$ and the sumcheck prover is proving the sums of the
/// composite polynomials $C_0, ..., C_{m-1}$, then the output of this method will be the
/// polynomial
///
/// $$
/// \sum_{v \in B_{n - k - 1}} \sum_{i=0}^{m-1} \alpha^i C_i(r_0, ..., r_{k-1}, X, \{v\})
/// $$
fn execute(&mut self, batch_coeff: F) -> Result<RoundCoeffs<F>, Error>;
/// Folds the sumcheck multilinears with a new verifier challenge.
fn fold(&mut self, challenge: F) -> Result<(), Error>;
/// Finishes the sumcheck proving protocol and returns the evaluations of all multilinears at
/// the challenge point.
fn finish(self) -> Result<Vec<F>, Error>;
}
/// Prove a batched sumcheck protocol execution.
///
/// The sumcheck protocol over can be batched over multiple instances by taking random linear
/// combinations over the claimed sums and polynomials. See
/// [`crate::protocols::sumcheck::batch_verify`] for more details.
///
/// The provers in the `provers` parameter must in the same order as the corresponding claims
/// provided to [`crate::protocols::sumcheck::batch_verify`] during proof verification.
#[instrument(skip_all, name = "sumcheck::batch_prove")]
pub fn batch_prove<F, Prover, Transcript>(
provers: Vec<Prover>,
transcript: Transcript,
) -> Result<(BatchSumcheckOutput<F>, Proof<F>), Error>
where
F: TowerField,
Prover: SumcheckProver<F>,
Transcript: CanSample<F> + CanWrite,
{
let start = BatchProveStart {
batch_coeffs: Vec::new(),
reduction_provers: Vec::<Prover>::new(),
};
batch_prove_with_start(start, provers, transcript)
}
/// A struct describing the starting state of batched sumcheck prove invocation.
#[derive(Debug)]
pub struct BatchProveStart<F: Field, Prover> {
/// Batching coefficients for the already batched provers.
pub batch_coeffs: Vec<F>,
/// Reduced provers which can complete sumchecks from an intermediate state.
pub reduction_provers: Vec<Prover>,
}
/// Prove a batched sumcheck protocol execution, but after some rounds have been processed.
#[instrument(skip_all, name = "sumcheck::batch_prove")]
pub fn batch_prove_with_start<F, Prover, Transcript>(
start: BatchProveStart<F, Prover>,
mut provers: Vec<Prover>,
mut transcript: Transcript,
) -> Result<(BatchSumcheckOutput<F>, Proof<F>), Error>
where
F: TowerField,
Prover: SumcheckProver<F>,
Transcript: CanSample<F> + CanWrite,
{
let BatchProveStart {
mut batch_coeffs,
reduction_provers,
} = start;
provers.splice(0..0, reduction_provers);
if provers.is_empty() {
return Ok((
BatchSumcheckOutput {
challenges: Vec::new(),
multilinear_evals: Vec::new(),
},
Proof::default(),
));
}
// Check that the provers are in descending order by n_vars
if !is_sorted_ascending(provers.iter().map(|prover| prover.n_vars()).rev()) {
bail!(Error::ClaimsOutOfOrder);
}
if batch_coeffs.len() > provers.len() {
bail!(Error::TooManyPrebatchedCoeffs);
}
let n_rounds = provers
.iter()
.map(|prover| prover.n_vars())
.max()
.unwrap_or(0);
// active_index is an index into the provers slice.
let mut active_index = batch_coeffs.len();
let mut challenges = Vec::with_capacity(n_rounds);
let mut rounds = Vec::with_capacity(n_rounds);
for round_no in 0..n_rounds {
let n_vars = n_rounds - round_no;
// Activate new provers
while let Some(prover) = provers.get(active_index) {
if prover.n_vars() != n_vars {
break;
}
let next_batch_coeff = transcript.sample();
batch_coeffs.push(next_batch_coeff);
active_index += 1;
}
// Process the active provers
let mut round_coeffs = RoundCoeffs::default();
for (&batch_coeff, prover) in
iter::zip(batch_coeffs.iter(), provers[..active_index].iter_mut())
{
let prover_coeffs = prover.execute(batch_coeff)?;
round_coeffs += &(prover_coeffs * batch_coeff);
}
let round_proof = round_coeffs.truncate();
transcript.write_scalar_slice(round_proof.coeffs());
rounds.push(round_proof);
let challenge = transcript.sample();
challenges.push(challenge);
for prover in provers[..active_index].iter_mut() {
prover.fold(challenge)?;
}
}
// sample next_batch_coeffs for 0-variate (ie. constant) provers to match with verify
while let Some(prover) = provers.get(active_index) {
debug_assert_eq!(prover.n_vars(), 0);
let _next_batch_coeff = transcript.sample();
active_index += 1;
}
let multilinear_evals = provers
.into_iter()
.map(|prover| prover.finish())
.collect::<Result<Vec<_>, _>>()?;
for multilinear_evals in multilinear_evals.iter() {
transcript.write_scalar_slice(multilinear_evals);
}
let output = BatchSumcheckOutput {
challenges,
multilinear_evals: multilinear_evals.clone(),
};
let proof = Proof {
multilinear_evals,
rounds,
};
Ok((output, proof))
}