binius_core/protocols/sumcheck/prove/
eq_ind.rs

1// Copyright 2025 Irreducible Inc.
2
3use std::{cmp::Reverse, marker::PhantomData, ops::Range};
4
5use binius_field::{util::eq, ExtensionField, Field, PackedExtension, PackedField, TowerField};
6use binius_hal::{make_portable_backend, ComputationBackend, Error as HalError, SumcheckEvaluator};
7use binius_math::{
8	CompositionPoly, EvaluationDomainFactory, EvaluationOrder, InterpolationDomain,
9	MultilinearPoly, RowsBatchRef,
10};
11use binius_maybe_rayon::prelude::*;
12use binius_utils::bail;
13use getset::Getters;
14use itertools::izip;
15use stackalloc::stackalloc_with_default;
16use tracing::instrument;
17
18use crate::{
19	polynomial::{
20		ArithCircuitPoly, Error as PolynomialError, MultilinearComposite, MultivariatePoly,
21	},
22	protocols::sumcheck::{
23		common::{
24			equal_n_vars_check, get_nontrivial_evaluation_points,
25			interpolation_domains_for_composition_degrees, RoundCoeffs,
26		},
27		prove::{
28			common::fold_partial_eq_ind, MultilinearInput, ProverState, SumcheckInterpolator,
29			SumcheckProver,
30		},
31		CompositeSumClaim, Error,
32	},
33	transparent::{eq_ind::EqIndPartialEval, step_up::StepUp},
34};
35
36pub fn validate_witness<F, P, M, Composition>(
37	multilinears: &[M],
38	eq_ind_challenges: &[F],
39	eq_ind_sum_claims: impl IntoIterator<Item = CompositeSumClaim<F, Composition>>,
40) -> Result<(), Error>
41where
42	F: Field,
43	P: PackedField<Scalar = F>,
44	M: MultilinearPoly<P> + Send + Sync,
45	Composition: CompositionPoly<P>,
46{
47	let n_vars = equal_n_vars_check(multilinears)?;
48	let multilinears = multilinears.iter().collect::<Vec<_>>();
49
50	if eq_ind_challenges.len() != n_vars {
51		bail!(Error::IncorrectEqIndChallengesLength);
52	}
53
54	let backend = make_portable_backend();
55	let eq_ind =
56		EqIndPartialEval::new(eq_ind_challenges).multilinear_extension::<P, _>(&backend)?;
57
58	for (i, claim) in eq_ind_sum_claims.into_iter().enumerate() {
59		let CompositeSumClaim {
60			composition,
61			sum: expected_sum,
62		} = claim;
63		let witness = MultilinearComposite::new(n_vars, composition, multilinears.clone())?;
64		let sum = (0..(1 << n_vars))
65			.into_par_iter()
66			.map(|j| -> Result<F, Error> {
67				Ok(eq_ind.evaluate_on_hypercube(j)? * witness.evaluate_on_hypercube(j)?)
68			})
69			.try_reduce(|| F::ZERO, |a, b| Ok(a + b))?;
70
71		if sum != expected_sum {
72			bail!(Error::SumcheckNaiveValidationFailure {
73				composition_index: i,
74			});
75		}
76	}
77	Ok(())
78}
79
80/// An "eq-ind" sumcheck prover.
81///
82/// The main difference of this prover from the `RegularSumcheckProver` is that
83/// it computes round evaluations of a much simpler "prime" polynomial
84/// multiplied by an already substituted portion of the equality indicator. This
85/// "prime" polynomial has the same degree as the underlying composition,
86/// reducing the number of would-be evaluation points by one, and avoids
87/// interpolating the tensor expansion of the equality indicator.  Round
88/// evaluations for the "full" assumed composition are computed in
89/// monomial form, out of hot loop.  See [Gruen24] Section 3.2 for details.
90///
91/// The rationale behind builder interface is the need to specify the pre-expanded
92/// equality indicator and potentially known evaluations at one in first round.
93///
94/// [Gruen24]: <https://eprint.iacr.org/2024/108>
95pub struct EqIndSumcheckProverBuilder<'a, P, Backend>
96where
97	P: PackedField,
98	Backend: ComputationBackend,
99{
100	eq_ind_partial_evals: Option<Backend::Vec<P>>,
101	nonzero_scalars_prefixes: Option<Vec<usize>>,
102	first_round_eval_1s: Option<Vec<P::Scalar>>,
103	backend: &'a Backend,
104}
105
106impl<'a, F, P, Backend> EqIndSumcheckProverBuilder<'a, P, Backend>
107where
108	F: TowerField,
109	P: PackedField<Scalar = F>,
110	Backend: ComputationBackend,
111{
112	pub fn new(backend: &'a Backend) -> Self {
113		Self {
114			backend,
115			eq_ind_partial_evals: None,
116			nonzero_scalars_prefixes: None,
117			first_round_eval_1s: None,
118		}
119	}
120
121	/// Specify an existing tensor expansion for `eq_ind_challenges` in [`Self::build`]. Avoids duplicate work.
122	pub fn with_eq_ind_partial_evals(mut self, eq_ind_partial_evals: Backend::Vec<P>) -> Self {
123		self.eq_ind_partial_evals = Some(eq_ind_partial_evals);
124		self
125	}
126
127	/// Specify the value of round polynomial at 1 in the first round if it is available beforehand.
128	///
129	/// Prime example of this is GPA (grand product argument), where the value of the previous GKR layer
130	/// may be used as an advice to compute the round polynomial at 1 directly with less effort compared
131	/// to direct composite evaluation.
132	pub fn with_first_round_eval_1s(mut self, first_round_eval_1s: &[F]) -> Self {
133		self.first_round_eval_1s = Some(first_round_eval_1s.to_vec());
134		self
135	}
136
137	/// Specify the nonzero scalar prefixes for multilinears.
138	///
139	/// The provided array specifies the nonzero scalars at the beginning of each multilinear.
140	/// Prover is able to reduce multilinear storage and compute using this information.
141	pub fn with_nonzero_scalars_prefixes(mut self, nonzero_scalars_prefixes: &[usize]) -> Self {
142		self.nonzero_scalars_prefixes = Some(nonzero_scalars_prefixes.to_vec());
143		self
144	}
145
146	#[instrument(skip_all, level = "debug", name = "EqIndSumcheckProverBuilder::build")]
147	pub fn build<FDomain, Composition, M>(
148		self,
149		evaluation_order: EvaluationOrder,
150		multilinears: Vec<M>,
151		eq_ind_challenges: &[F],
152		composite_claims: impl IntoIterator<Item = CompositeSumClaim<F, Composition>>,
153		domain_factory: impl EvaluationDomainFactory<FDomain>,
154		switchover_fn: impl Fn(usize) -> usize,
155	) -> Result<EqIndSumcheckProver<'a, FDomain, P, Composition, M, Backend>, Error>
156	where
157		F: ExtensionField<FDomain>,
158		P: PackedExtension<FDomain>,
159		FDomain: Field,
160		M: MultilinearPoly<P> + Send + Sync,
161		Composition: CompositionPoly<P>,
162	{
163		let n_vars = equal_n_vars_check(&multilinears)?;
164		let composite_claims = composite_claims.into_iter().collect::<Vec<_>>();
165		let backend = self.backend;
166
167		#[cfg(feature = "debug_validate_sumcheck")]
168		{
169			let composite_claims = composite_claims
170				.iter()
171				.map(|composite_claim| CompositeSumClaim {
172					composition: &composite_claim.composition,
173					sum: composite_claim.sum,
174				})
175				.collect::<Vec<_>>();
176			validate_witness(&multilinears, eq_ind_challenges, composite_claims.clone())?;
177		}
178
179		if eq_ind_challenges.len() != n_vars {
180			bail!(Error::IncorrectEqIndChallengesLength);
181		}
182
183		// Only one value of the expanded equality indicator is used per each
184		// 1-variable subcube, thus it should be twice smaller.
185		let eq_ind_partial_evals = if let Some(eq_ind_partial_evals) = self.eq_ind_partial_evals {
186			if eq_ind_partial_evals.len() != 1 << n_vars.saturating_sub(P::LOG_WIDTH + 1) {
187				bail!(Error::IncorrectEqIndPartialEvalsSize);
188			}
189
190			eq_ind_partial_evals
191		} else {
192			eq_ind_expand(evaluation_order, n_vars, eq_ind_challenges, backend)?
193		};
194
195		if let Some(ref first_round_eval_1s) = self.first_round_eval_1s {
196			if first_round_eval_1s.len() != composite_claims.len() {
197				bail!(Error::IncorrectFirstRoundEvalOnesLength);
198			}
199		}
200
201		for claim in &composite_claims {
202			if claim.composition.n_vars() != multilinears.len() {
203				bail!(Error::InvalidComposition {
204					expected: multilinears.len(),
205					actual: claim.composition.n_vars(),
206				});
207			}
208		}
209
210		let zero_scalars_suffixes = self
211			.nonzero_scalars_prefixes
212			.unwrap_or_else(|| vec![1 << n_vars; multilinears.len()])
213			.into_iter()
214			.map(|prefix| (1 << n_vars) - prefix)
215			.collect::<Vec<_>>();
216
217		let (compositions, claimed_sums) =
218			determine_const_eval_suffixes(composite_claims, &zero_scalars_suffixes);
219
220		let domains = interpolation_domains_for_composition_degrees(
221			domain_factory,
222			compositions
223				.iter()
224				.map(|(composition, _)| composition.degree()),
225		)?;
226
227		let nontrivial_evaluation_points = get_nontrivial_evaluation_points(&domains)?;
228
229		let multilinears_input = izip!(multilinears, &zero_scalars_suffixes)
230			.map(|(multilinear, &zero_scalars_suffix)| MultilinearInput {
231				multilinear,
232				zero_scalars_suffix,
233			})
234			.collect();
235
236		let state = ProverState::new(
237			evaluation_order,
238			multilinears_input,
239			claimed_sums,
240			nontrivial_evaluation_points,
241			switchover_fn,
242			backend,
243		)?;
244
245		let eq_ind_prefix_eval = F::ONE;
246		let eq_ind_challenges = eq_ind_challenges.to_vec();
247		let first_round_eval_1s = self.first_round_eval_1s;
248
249		Ok(EqIndSumcheckProver {
250			n_vars,
251			state,
252			eq_ind_prefix_eval,
253			eq_ind_partial_evals,
254			eq_ind_challenges,
255			compositions,
256			domains,
257			first_round_eval_1s,
258			backend: PhantomData,
259		})
260	}
261}
262
263#[derive(Default, PartialEq, Eq, Debug)]
264pub struct ConstEvalSuffix<F: Field> {
265	pub suffix: usize,
266	pub value: F,
267	pub value_at_inf: F,
268}
269
270impl<F: Field> ConstEvalSuffix<F> {
271	fn update(&mut self, evaluation_order: EvaluationOrder, n_vars: usize) {
272		let eval_prefix = (1 << n_vars) - self.suffix;
273		let updated_eval_prefix = match evaluation_order {
274			EvaluationOrder::LowToHigh => eval_prefix.div_ceil(2),
275			EvaluationOrder::HighToLow => eval_prefix.min(1 << (n_vars - 1)),
276		};
277		self.suffix = (1 << (n_vars - 1)) - updated_eval_prefix;
278	}
279}
280
281#[derive(Debug, Getters)]
282pub struct EqIndSumcheckProver<'a, FDomain, P, Composition, M, Backend>
283where
284	FDomain: Field,
285	P: PackedField,
286	M: MultilinearPoly<P> + Send + Sync,
287	Backend: ComputationBackend,
288{
289	n_vars: usize,
290	state: ProverState<'a, FDomain, P, M, Backend>,
291	eq_ind_prefix_eval: P::Scalar,
292	eq_ind_partial_evals: Backend::Vec<P>,
293	eq_ind_challenges: Vec<P::Scalar>,
294	#[getset(get = "pub")]
295	compositions: Vec<(Composition, ConstEvalSuffix<P::Scalar>)>,
296	domains: Vec<InterpolationDomain<FDomain>>,
297	first_round_eval_1s: Option<Vec<P::Scalar>>,
298	backend: PhantomData<Backend>,
299}
300
301impl<F, FDomain, P, Composition, M, Backend>
302	EqIndSumcheckProver<'_, FDomain, P, Composition, M, Backend>
303where
304	F: TowerField + ExtensionField<FDomain>,
305	FDomain: Field,
306	P: PackedExtension<FDomain, Scalar = F>,
307	Composition: CompositionPoly<P>,
308	M: MultilinearPoly<P> + Send + Sync,
309	Backend: ComputationBackend,
310{
311	fn round(&self) -> usize {
312		self.n_vars - self.n_rounds_remaining()
313	}
314
315	fn n_rounds_remaining(&self) -> usize {
316		self.state.n_vars()
317	}
318
319	fn eq_ind_round_challenge(&self) -> F {
320		match self.state.evaluation_order() {
321			EvaluationOrder::LowToHigh => self.eq_ind_challenges[self.round()],
322			EvaluationOrder::HighToLow => {
323				self.eq_ind_challenges[self.eq_ind_challenges.len() - 1 - self.round()]
324			}
325		}
326	}
327
328	fn update_eq_ind_prefix_eval(&mut self, challenge: F) {
329		// Update the running eq ind evaluation.
330		self.eq_ind_prefix_eval *= eq(self.eq_ind_round_challenge(), challenge);
331	}
332}
333
334pub fn eq_ind_expand<P, Backend>(
335	evaluation_order: EvaluationOrder,
336	n_vars: usize,
337	eq_ind_challenges: &[P::Scalar],
338	backend: &Backend,
339) -> Result<Backend::Vec<P>, HalError>
340where
341	P: PackedField,
342	Backend: ComputationBackend,
343{
344	if n_vars != eq_ind_challenges.len() {
345		bail!(HalError::IncorrectQuerySize { expected: n_vars });
346	}
347
348	backend.tensor_product_full_query(match evaluation_order {
349		EvaluationOrder::LowToHigh => &eq_ind_challenges[n_vars.min(1)..],
350		EvaluationOrder::HighToLow => &eq_ind_challenges[..n_vars.saturating_sub(1)],
351	})
352}
353
354type CompositionsAndSums<F, Composition> = (Vec<(Composition, ConstEvalSuffix<F>)>, Vec<F>);
355
356// Automatically determine trace suffix which evaluates to constant polynomials during sumcheck.
357//
358// Algorithm outline:
359//  * sort multilinears by non-increasing zero scalars suffix
360//  * processing multilinears in this order, symbolically substitute zero for current variable and optimize
361//  * if the remaning expressions at finite points and Karatsuba infinity are constant, assume this suffix
362fn determine_const_eval_suffixes<F, P, Composition>(
363	composite_claims: Vec<CompositeSumClaim<F, Composition>>,
364	zero_scalars_suffixes: &[usize],
365) -> CompositionsAndSums<F, Composition>
366where
367	F: Field,
368	P: PackedField<Scalar = F>,
369	Composition: CompositionPoly<P>,
370{
371	let mut zero_scalars_suffixes = zero_scalars_suffixes
372		.iter()
373		.copied()
374		.enumerate()
375		.collect::<Vec<_>>();
376
377	zero_scalars_suffixes.sort_by_key(|(_var, zero_scalars_suffix)| Reverse(*zero_scalars_suffix));
378
379	composite_claims
380		.into_iter()
381		.map(|claim| {
382			let CompositeSumClaim { composition, sum } = claim;
383
384			let mut const_eval_suffix = Default::default();
385
386			let mut expr = composition.expression();
387			let mut expr_at_inf = composition.expression().leading_term();
388
389			for &(var_index, suffix) in &zero_scalars_suffixes {
390				expr = expr.const_subst(var_index, F::ZERO).optimize();
391				expr_at_inf = expr_at_inf.const_subst(var_index, F::ZERO).optimize();
392
393				if let Some((value, value_at_inf)) = expr.constant().zip(expr_at_inf.constant()) {
394					const_eval_suffix = ConstEvalSuffix {
395						suffix,
396						value,
397						value_at_inf,
398					};
399
400					break;
401				}
402			}
403
404			((composition, const_eval_suffix), sum)
405		})
406		.unzip::<_, _, Vec<_>, Vec<_>>()
407}
408
409impl<F, FDomain, P, Composition, M, Backend> SumcheckProver<F>
410	for EqIndSumcheckProver<'_, FDomain, P, Composition, M, Backend>
411where
412	F: TowerField + ExtensionField<FDomain>,
413	FDomain: Field,
414	P: PackedExtension<FDomain, Scalar = F>,
415	Composition: CompositionPoly<P>,
416	M: MultilinearPoly<P> + Send + Sync,
417	Backend: ComputationBackend,
418{
419	fn n_vars(&self) -> usize {
420		self.n_vars
421	}
422
423	fn evaluation_order(&self) -> EvaluationOrder {
424		self.state.evaluation_order()
425	}
426
427	#[instrument(skip_all, name = "EqIndSumcheckProver::execute", level = "debug")]
428	fn execute(&mut self, batch_coeff: F) -> Result<RoundCoeffs<F>, Error> {
429		let round = self.round();
430		let n_rounds_remaining = self.n_rounds_remaining();
431
432		let alpha = self.eq_ind_round_challenge();
433		let eq_ind_partial_evals = &self.eq_ind_partial_evals;
434
435		let first_round_eval_1s = self.first_round_eval_1s.take();
436		let have_first_round_eval_1s = first_round_eval_1s.is_some();
437
438		let eq_ind_challenges = match self.state.evaluation_order() {
439			EvaluationOrder::LowToHigh => &self.eq_ind_challenges[self.n_vars.min(round + 1)..],
440			EvaluationOrder::HighToLow => {
441				&self.eq_ind_challenges[..self.n_vars.saturating_sub(round + 1)]
442			}
443		};
444
445		let evaluators = self
446			.compositions
447			.iter_mut()
448			.map(|(composition, const_eval_suffix)| {
449				let composition_at_infinity =
450					ArithCircuitPoly::new(composition.expression().leading_term());
451
452				const_eval_suffix.update(self.state.evaluation_order(), n_rounds_remaining);
453
454				Evaluator {
455					n_rounds_remaining,
456					composition,
457					composition_at_infinity,
458					have_first_round_eval_1s,
459					eq_ind_challenges,
460					eq_ind_partial_evals,
461					const_eval_suffix,
462				}
463			})
464			.collect::<Vec<_>>();
465
466		let interpolators = self
467			.domains
468			.iter()
469			.enumerate()
470			.map(|(index, interpolation_domain)| Interpolator {
471				interpolation_domain,
472				alpha,
473				first_round_eval_1: first_round_eval_1s
474					.as_ref()
475					.map(|first_round_eval_1s| first_round_eval_1s[index]),
476			})
477			.collect::<Vec<_>>();
478
479		let round_evals = self.state.calculate_round_evals(&evaluators)?;
480
481		let prime_coeffs = self.state.calculate_round_coeffs_from_evals(
482			&interpolators,
483			batch_coeff,
484			round_evals,
485		)?;
486
487		// Convert v' polynomial into v polynomial
488
489		// eq(X, α) = (1 − α) + (2 α − 1) X
490		// NB: In binary fields, this expression can be simplified to 1 + α + challenge.
491		let (prime_coeffs_scaled_by_constant_term, mut prime_coeffs_scaled_by_linear_term) =
492			if F::CHARACTERISTIC == 2 {
493				(prime_coeffs.clone() * (F::ONE + alpha), prime_coeffs)
494			} else {
495				(prime_coeffs.clone() * (F::ONE - alpha), prime_coeffs * (alpha.double() - F::ONE))
496			};
497
498		prime_coeffs_scaled_by_linear_term.0.insert(0, F::ZERO); // Multiply prime polynomial by X
499
500		let coeffs = (prime_coeffs_scaled_by_constant_term + &prime_coeffs_scaled_by_linear_term)
501			* self.eq_ind_prefix_eval;
502
503		Ok(coeffs)
504	}
505
506	#[instrument(skip_all, name = "EqIndSumcheckProver::fold", level = "debug")]
507	fn fold(&mut self, challenge: F) -> Result<(), Error> {
508		self.update_eq_ind_prefix_eval(challenge);
509
510		let evaluation_order = self.state.evaluation_order();
511		let n_rounds_remaining = self.n_rounds_remaining();
512
513		let Self {
514			state,
515			eq_ind_partial_evals,
516			..
517		} = self;
518
519		binius_maybe_rayon::join(
520			|| state.fold(challenge),
521			|| {
522				fold_partial_eq_ind::<P, Backend>(
523					evaluation_order,
524					n_rounds_remaining - 1,
525					eq_ind_partial_evals,
526				);
527			},
528		)
529		.0?;
530		Ok(())
531	}
532
533	fn finish(self: Box<Self>) -> Result<Vec<F>, Error> {
534		let mut evals = self.state.finish()?;
535		evals.push(self.eq_ind_prefix_eval);
536		Ok(evals)
537	}
538}
539
540struct Evaluator<'a, P, Composition>
541where
542	P: PackedField,
543{
544	n_rounds_remaining: usize,
545	composition: &'a Composition,
546	composition_at_infinity: ArithCircuitPoly<P::Scalar>,
547	have_first_round_eval_1s: bool,
548	eq_ind_challenges: &'a [P::Scalar],
549	eq_ind_partial_evals: &'a [P],
550	const_eval_suffix: &'a ConstEvalSuffix<P::Scalar>,
551}
552
553impl<P, Composition> SumcheckEvaluator<P, Composition> for Evaluator<'_, P, Composition>
554where
555	P: PackedField<Scalar: TowerField>,
556	Composition: CompositionPoly<P>,
557{
558	fn eval_point_indices(&self) -> Range<usize> {
559		// Do not evaluate r(1) in first round when its value is known
560		let start_index = if self.have_first_round_eval_1s { 2 } else { 1 };
561		start_index..self.composition.degree() + 1
562	}
563
564	fn process_subcube_at_eval_point(
565		&self,
566		subcube_vars: usize,
567		subcube_index: usize,
568		is_infinity_point: bool,
569		batch_query: &RowsBatchRef<P>,
570	) -> P {
571		let row_len = batch_query.row_len();
572
573		stackalloc_with_default(row_len, |evals| {
574			if is_infinity_point {
575				self.composition_at_infinity
576					.batch_evaluate(batch_query, evals)
577					.expect("correct by query construction invariant");
578			} else {
579				self.composition
580					.batch_evaluate(batch_query, evals)
581					.expect("correct by query construction invariant");
582			};
583
584			let subcube_start = subcube_index << subcube_vars.saturating_sub(P::LOG_WIDTH);
585			for (i, eval) in evals.iter_mut().enumerate() {
586				// REVIEW: investigate whether its possible to access a subcube smaller than
587				//         the packing width and unaligned on the packed field binary; in that
588				//         case spread multiplication may be needed.
589				*eval *= self.eq_ind_partial_evals[subcube_start + i];
590			}
591			evals.iter().copied().sum::<P>()
592		})
593	}
594
595	fn process_constant_eval_suffix(
596		&self,
597		const_eval_suffix: usize,
598		is_infinity_point: bool,
599	) -> P::Scalar {
600		let eval_prefix = (1 << self.n_rounds_remaining) - const_eval_suffix;
601		let eq_ind_suffix_sum = StepUp::new(self.eq_ind_challenges.len(), eval_prefix)
602			.expect("eval_prefix does not exceed the equality indicator size")
603			.evaluate(self.eq_ind_challenges)
604			.expect("StepUp is initialized with eq_ind_challenges.len()");
605
606		eq_ind_suffix_sum
607			* if is_infinity_point {
608				self.const_eval_suffix.value_at_inf
609			} else {
610				self.const_eval_suffix.value
611			}
612	}
613
614	fn composition(&self) -> &Composition {
615		self.composition
616	}
617
618	fn eq_ind_partial_eval(&self) -> Option<&[P]> {
619		Some(self.eq_ind_partial_evals)
620	}
621
622	fn const_eval_suffix(&self) -> usize {
623		self.const_eval_suffix.suffix
624	}
625}
626
627struct Interpolator<'a, F, FDomain>
628where
629	F: Field,
630	FDomain: Field,
631{
632	interpolation_domain: &'a InterpolationDomain<FDomain>,
633	alpha: F,
634	first_round_eval_1: Option<F>,
635}
636
637impl<F, FDomain> SumcheckInterpolator<F> for Interpolator<'_, F, FDomain>
638where
639	F: ExtensionField<FDomain>,
640	FDomain: Field,
641{
642	#[instrument(
643		skip_all,
644		name = "eq_ind::Interpolator::round_evals_to_coeffs",
645		level = "debug"
646	)]
647	fn round_evals_to_coeffs(
648		&self,
649		last_round_sum: F,
650		mut round_evals: Vec<F>,
651	) -> Result<Vec<F>, PolynomialError> {
652		if let Some(first_round_eval_1) = self.first_round_eval_1 {
653			round_evals.insert(0, first_round_eval_1);
654		}
655
656		let one_evaluation = round_evals[0];
657		let zero_evaluation_numerator = last_round_sum - one_evaluation * self.alpha;
658		let zero_evaluation_denominator_inv = (F::ONE - self.alpha).invert_or_zero();
659		let zero_evaluation = zero_evaluation_numerator * zero_evaluation_denominator_inv;
660		round_evals.insert(0, zero_evaluation);
661
662		if round_evals.len() > 3 {
663			// SumcheckRoundCalculator orders interpolation points as 0, 1, "infinity", then subspace points.
664			// InterpolationDomain expects "infinity" at the last position, thus reordering is needed.
665			// Putting "special" evaluation points at the beginning of domain allows benefitting from
666			// faster/skipped interpolation even in case of mixed degree compositions .
667			let infinity_round_eval = round_evals.remove(2);
668			round_evals.push(infinity_round_eval);
669		}
670
671		Ok(self.interpolation_domain.interpolate(&round_evals)?)
672	}
673}