binius_core/protocols/sumcheck/
univariate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// Copyright 2024-2025 Irreducible Inc.

use std::{
	iter::{self, repeat_n},
	ops::{Mul, MulAssign},
};

use binius_field::{ExtensionField, Field, PackedFieldIndexable, TowerField};
use binius_hal::{make_portable_backend, ComputationBackendExt};
use binius_math::{
	EvaluationDomain, EvaluationDomainFactory, IsomorphicEvaluationDomainFactory,
	MultilinearExtension,
};
use binius_utils::{bail, checked_arithmetics::log2_strict_usize, sorting::is_sorted_ascending};
use bytemuck::zeroed_vec;

use crate::{
	composition::{BivariateProduct, IndexComposition},
	polynomial::Error as PolynomialError,
	protocols::sumcheck::{
		BatchSumcheckOutput, CompositeSumClaim, Error, SumcheckClaim, VerificationError,
	},
};

/// A univariate polynomial in Lagrange basis.
///
/// The coefficient at position `i` in the `lagrange_coeffs` corresponds to evaluation
/// at `i+zeros_prefix_len`-th field element of some agreed upon domain. Coefficients
/// at positions `0..zeros_prefix_len` are zero. Addition of Lagrange basis representations
/// only makes sense for the polynomials in the same domain.
#[derive(Clone, Debug)]
pub struct LagrangeRoundEvals<F: Field> {
	pub zeros_prefix_len: usize,
	pub evals: Vec<F>,
}

impl<F: Field> LagrangeRoundEvals<F> {
	/// A Lagrange representation of a zero polynomial, on a given domain.
	pub fn zeros(zeros_prefix_len: usize) -> Self {
		LagrangeRoundEvals {
			zeros_prefix_len,
			evals: Vec::new(),
		}
	}

	/// An assigning addition of two polynomials in Lagrange basis. May fail,
	/// thus it's not simply an `AddAssign` overload due to signature mismatch.
	pub fn add_assign_lagrange(&mut self, rhs: &Self) -> Result<(), Error> {
		let lhs_len = self.zeros_prefix_len + self.evals.len();
		let rhs_len = rhs.zeros_prefix_len + rhs.evals.len();

		if lhs_len != rhs_len {
			bail!(Error::LagrangeRoundEvalsSizeMismatch);
		}

		let start_idx = if rhs.zeros_prefix_len < self.zeros_prefix_len {
			self.evals
				.splice(0..0, repeat_n(F::ZERO, self.zeros_prefix_len - rhs.zeros_prefix_len));
			self.zeros_prefix_len = rhs.zeros_prefix_len;
			0
		} else {
			rhs.zeros_prefix_len - self.zeros_prefix_len
		};

		for (lhs, rhs) in self.evals[start_idx..].iter_mut().zip(&rhs.evals) {
			*lhs += rhs;
		}

		Ok(())
	}
}

impl<F: Field> Mul<F> for LagrangeRoundEvals<F> {
	type Output = LagrangeRoundEvals<F>;

	fn mul(mut self, rhs: F) -> Self::Output {
		self *= rhs;
		self
	}
}

impl<F: Field> MulAssign<F> for LagrangeRoundEvals<F> {
	fn mul_assign(&mut self, rhs: F) {
		for eval in self.evals.iter_mut() {
			*eval *= rhs;
		}
	}
}
/// Creates sumcheck claims for the reduction from evaluations of univariatized virtual multilinear oracles to
/// "regular" multilinear evaluations.
///
/// Univariatized virtual multilinear oracles are given by:
/// $$\hat{M}(\hat{u}_1,x_1,\ldots,x_n) = \sum M(u_1,\ldots, u_k, x_1, \ldots, x_n) \cdot L_u(\hat{u}_1)$$
/// It is assumed that `univariatized_multilinear_evals` came directly from a previous sumcheck with a univariate
/// round batching `skip_rounds` variables.
pub fn univariatizing_reduction_claim<F: Field>(
	skip_rounds: usize,
	univariatized_multilinear_evals: &[F],
) -> Result<SumcheckClaim<F, IndexComposition<BivariateProduct, 2>>, Error> {
	let composite_sums =
		univariatizing_reduction_composite_sum_claims(univariatized_multilinear_evals);
	SumcheckClaim::new(skip_rounds, univariatized_multilinear_evals.len() + 1, composite_sums)
}

/// Verify the validity of sumcheck outputs for the reduction zerocheck.
///
/// This takes in the output of the batched univariatizing reduction sumcheck and returns the output
/// that can be used to create multilinear evaluation claims. This simply strips off the evaluation of
/// the multilinear extension of Lagrange polynomials evaluations at `univariate_challenge` (denoted by
/// $\hat{u}_1$) and verifies that this value is correct. The argument `unskipped_sumcheck_challenges`
/// holds the challenges of the sumcheck following the univariate round.
pub fn verify_sumcheck_outputs<F>(
	claims: &[SumcheckClaim<F, IndexComposition<BivariateProduct, 2>>],
	univariate_challenge: F,
	unskipped_sumcheck_challenges: &[F],
	sumcheck_output: BatchSumcheckOutput<F>,
) -> Result<BatchSumcheckOutput<F>, Error>
where
	F: TowerField,
{
	let BatchSumcheckOutput {
		challenges: reduction_sumcheck_challenges,
		mut multilinear_evals,
	} = sumcheck_output;

	assert_eq!(multilinear_evals.len(), claims.len());

	// Check that the claims are in descending order by n_vars
	if !is_sorted_ascending(claims.iter().map(|claim| claim.n_vars()).rev()) {
		bail!(Error::ClaimsOutOfOrder);
	}

	let max_n_vars = claims
		.first()
		.map(|claim| claim.n_vars())
		.unwrap_or_default();

	assert_eq!(reduction_sumcheck_challenges.len(), max_n_vars);

	for (claim, multilinear_evals) in iter::zip(claims, multilinear_evals.iter_mut()) {
		let skip_rounds = claim.n_vars();

		let evaluation_domain = IsomorphicEvaluationDomainFactory::<F::Canonical>::default()
			.create(1 << skip_rounds)?;

		let lagrange_mle = lagrange_evals_multilinear_extension::<F, F, F>(
			&evaluation_domain,
			univariate_challenge,
		)?;

		let query = make_portable_backend()
			.multilinear_query::<F>(&reduction_sumcheck_challenges[max_n_vars - skip_rounds..])?;
		let expected_last_eval = lagrange_mle.evaluate(query.to_ref())?;

		let multilinear_evals_last = multilinear_evals
			.pop()
			.ok_or(VerificationError::NumberOfFinalEvaluations)?;

		if multilinear_evals_last != expected_last_eval {
			bail!(VerificationError::IncorrectLagrangeMultilinearEvaluation);
		}
	}

	let mut challenges = Vec::new();
	challenges.extend(reduction_sumcheck_challenges);
	challenges.extend(unskipped_sumcheck_challenges);

	let output = BatchSumcheckOutput {
		challenges,
		multilinear_evals,
	};

	Ok(output)
}

// Helper method to create univariatized multilinear oracle evaluation claims.
// Assumes that multilinear extension of Lagrange evaluations is the last multilinear,
// uses IndexComposition to multiply each multilinear with it (using BivariateProduct).
pub(super) fn univariatizing_reduction_composite_sum_claims<F: Field>(
	univariatized_multilinear_evals: &[F],
) -> Vec<CompositeSumClaim<F, IndexComposition<BivariateProduct, 2>>> {
	let n_multilinears = univariatized_multilinear_evals.len();
	univariatized_multilinear_evals
		.iter()
		.enumerate()
		.map(|(i, &univariatized_multilinear_eval)| {
			let composition =
				IndexComposition::new(n_multilinears + 1, [i, n_multilinears], BivariateProduct {})
					.expect("index composition indice correct by construction");

			CompositeSumClaim {
				composition,
				sum: univariatized_multilinear_eval,
			}
		})
		.collect()
}

// Given EvaluationDomain, evaluates Lagrange coefficients at a challenge point
// and creates a multilinear extension of said evaluations.
pub(super) fn lagrange_evals_multilinear_extension<FDomain, F, P>(
	evaluation_domain: &EvaluationDomain<FDomain>,
	univariate_challenge: F,
) -> Result<MultilinearExtension<P>, PolynomialError>
where
	FDomain: Field,
	F: Field + ExtensionField<FDomain>,
	P: PackedFieldIndexable<Scalar = F>,
{
	let lagrange_evals = evaluation_domain.lagrange_evals(univariate_challenge);

	let n_vars = log2_strict_usize(lagrange_evals.len());
	let mut packed = zeroed_vec(lagrange_evals.len().div_ceil(P::WIDTH));
	let scalars = P::unpack_scalars_mut(packed.as_mut_slice());
	scalars[..lagrange_evals.len()].copy_from_slice(lagrange_evals.as_slice());

	Ok(MultilinearExtension::new(n_vars, packed)?)
}

#[cfg(test)]
mod tests {
	use std::{iter, sync::Arc};

	use binius_field::{
		arch::{OptimalUnderlier128b, OptimalUnderlier512b},
		as_packed_field::{PackScalar, PackedType},
		underlier::UnderlierType,
		AESTowerField128b, AESTowerField16b, AESTowerField8b, BinaryField128b, BinaryField16b,
		Field, PackedBinaryField1x128b, PackedBinaryField4x32b, PackedExtension,
		PackedFieldIndexable, RepackedExtension, TowerField,
	};
	use binius_hal::ComputationBackend;
	use binius_math::{
		CompositionPolyOS, DefaultEvaluationDomainFactory, EvaluationDomainFactory,
		IsomorphicEvaluationDomainFactory, MultilinearPoly,
	};
	use groestl_crypto::Groestl256;
	use rand::{prelude::StdRng, SeedableRng};

	use super::*;
	use crate::{
		composition::{IndexComposition, ProductComposition},
		fiat_shamir::{CanSample, HasherChallenger},
		polynomial::CompositionScalarAdapter,
		protocols::{
			sumcheck::{
				batch_verify, batch_verify_with_start, batch_verify_zerocheck_univariate_round,
				prove::{
					batch_prove, batch_prove_with_start, batch_prove_zerocheck_univariate_round,
					univariate::{reduce_to_skipped_projection, univariatizing_reduction_prover},
					SumcheckProver, UnivariateZerocheck,
				},
				standard_switchover_heuristic,
				zerocheck::reduce_to_sumchecks,
				ZerocheckClaim,
			},
			test_utils::generate_zero_product_multilinears,
		},
		transcript::{AdviceWriter, Proof, TranscriptWriter},
	};

	#[test]
	fn test_univariatizing_reduction_end_to_end() {
		type F = BinaryField128b;
		type FDomain = BinaryField16b;
		type P = PackedBinaryField4x32b;
		type PE = PackedBinaryField1x128b;

		let backend = make_portable_backend();
		let mut rng = StdRng::seed_from_u64(0);

		let regular_vars = 3;
		let max_skip_rounds = 3;
		let n_multilinears = 2;

		let evaluation_domain_factory = DefaultEvaluationDomainFactory::<FDomain>::default();

		let univariate_challenge = <F as Field>::random(&mut rng);

		let sumcheck_challenges = (0..regular_vars)
			.map(|_| <F as Field>::random(&mut rng))
			.collect::<Vec<_>>();

		let mut provers = Vec::new();
		let mut all_multilinears = Vec::new();
		let mut all_univariatized_multilinear_evals = Vec::new();
		for skip_rounds in (0..=max_skip_rounds).rev() {
			let n_vars = skip_rounds + regular_vars;

			let multilinears =
				generate_zero_product_multilinears::<P, PE>(&mut rng, n_vars, n_multilinears);
			all_multilinears.push((skip_rounds, multilinears.clone()));

			let domain = evaluation_domain_factory
				.clone()
				.create(1 << skip_rounds)
				.unwrap();

			let query = backend.multilinear_query(&sumcheck_challenges).unwrap();
			let univariatized_multilinear_evals = multilinears
				.iter()
				.map(|multilinear| {
					let partial_eval = backend
						.evaluate_partial_high(multilinear, query.to_ref())
						.unwrap();
					domain
						.extrapolate(PE::unpack_scalars(partial_eval.evals()), univariate_challenge)
						.unwrap()
				})
				.collect::<Vec<_>>();

			all_univariatized_multilinear_evals.push(univariatized_multilinear_evals.clone());

			let reduced_multilinears =
				reduce_to_skipped_projection(multilinears, &sumcheck_challenges, &backend).unwrap();

			let prover = univariatizing_reduction_prover(
				reduced_multilinears,
				&univariatized_multilinear_evals,
				univariate_challenge,
				evaluation_domain_factory.clone(),
				&backend,
			)
			.unwrap();

			provers.push(prover);
		}

		let mut prove_challenger = Proof {
			transcript: TranscriptWriter::<HasherChallenger<Groestl256>>::default(),
			advice: AdviceWriter::default(),
		};
		let batch_sumcheck_output_prove =
			batch_prove(provers, &mut prove_challenger.transcript).unwrap();

		for ((skip_rounds, multilinears), multilinear_evals) in
			iter::zip(&all_multilinears, batch_sumcheck_output_prove.multilinear_evals)
		{
			assert_eq!(multilinears.len() + 1, multilinear_evals.len());

			let mut query =
				batch_sumcheck_output_prove.challenges[max_skip_rounds - skip_rounds..].to_vec();
			query.extend(sumcheck_challenges.as_slice());

			let query = backend.multilinear_query(&query).unwrap();

			for (multilinear, eval) in iter::zip(multilinears, multilinear_evals) {
				assert_eq!(multilinear.evaluate(query.to_ref()).unwrap(), eval);
			}
		}

		let claims = iter::zip(&all_multilinears, &all_univariatized_multilinear_evals)
			.map(|((skip_rounds, _q), univariatized_multilinear_evals)| {
				univariatizing_reduction_claim(*skip_rounds, univariatized_multilinear_evals)
					.unwrap()
			})
			.collect::<Vec<_>>();

		let mut verify_challenger = prove_challenger.into_verifier();
		let batch_sumcheck_output_verify =
			batch_verify(claims.as_slice(), &mut verify_challenger.transcript).unwrap();
		let batch_sumcheck_output_post = verify_sumcheck_outputs(
			claims.as_slice(),
			univariate_challenge,
			&sumcheck_challenges,
			batch_sumcheck_output_verify,
		)
		.unwrap();

		for ((skip_rounds, multilinears), evals) in
			iter::zip(all_multilinears, batch_sumcheck_output_post.multilinear_evals)
		{
			let mut query = batch_sumcheck_output_post.challenges
				[max_skip_rounds - skip_rounds..max_skip_rounds]
				.to_vec();
			query.extend(sumcheck_challenges.as_slice());

			let query = backend.multilinear_query(&query).unwrap();

			for (multilinear, eval) in iter::zip(multilinears, evals) {
				assert_eq!(multilinear.evaluate(query.to_ref()).unwrap(), eval);
			}
		}
	}

	#[test]
	fn test_univariatized_zerocheck_end_to_end_basic() {
		test_univariatized_zerocheck_end_to_end_helper::<
			OptimalUnderlier128b,
			BinaryField128b,
			AESTowerField128b,
			AESTowerField16b,
			AESTowerField16b,
			AESTowerField8b,
		>()
	}

	#[test]
	fn test_univariatized_zerocheck_end_to_end_with_nontrivial_packing() {
		// Using a 512-bit underlier with a 128-bit extension field means the packed field will have a
		// non-trivial packing width of 4.
		test_univariatized_zerocheck_end_to_end_helper::<
			OptimalUnderlier512b,
			BinaryField128b,
			AESTowerField128b,
			AESTowerField16b,
			AESTowerField16b,
			AESTowerField8b,
		>()
	}

	fn test_univariatized_zerocheck_end_to_end_helper<U, F, FI, FDomain, FBase, FWitness>()
	where
		U: UnderlierType
			+ PackScalar<FI>
			+ PackScalar<FBase>
			+ PackScalar<FDomain>
			+ PackScalar<FWitness>,
		F: TowerField + From<FI>,
		FI: TowerField + ExtensionField<FDomain> + ExtensionField<FBase> + ExtensionField<FWitness>,
		FBase: TowerField + ExtensionField<FDomain>,
		FDomain: TowerField,
		FWitness: Field,
		PackedType<U, FBase>:
			PackedFieldIndexable + PackedExtension<FDomain, PackedSubfield: PackedFieldIndexable>,
		PackedType<U, FI>: PackedFieldIndexable + RepackedExtension<PackedType<U, FBase>>,
	{
		let max_n_vars = 6;
		let n_multilinears = 9;

		let backend = make_portable_backend();
		let domain_factory = IsomorphicEvaluationDomainFactory::<FDomain>::default();
		let switchover_fn = standard_switchover_heuristic(-2);
		let mut rng = StdRng::seed_from_u64(0);

		let pair = Arc::new(IndexComposition::new(9, [0, 1], ProductComposition::<2> {}).unwrap());
		let triple =
			Arc::new(IndexComposition::new(9, [2, 3, 4], ProductComposition::<3> {}).unwrap());
		let quad =
			Arc::new(IndexComposition::new(9, [5, 6, 7, 8], ProductComposition::<4> {}).unwrap());

		let prover_compositions = [
			(
				"pair".into(),
				pair.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FBase>>>,
				pair.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FI>>>,
			),
			(
				"triple".into(),
				triple.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FBase>>>,
				triple.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FI>>>,
			),
			(
				"quad".into(),
				quad.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FBase>>>,
				quad.clone() as Arc<dyn CompositionPolyOS<PackedType<U, FI>>>,
			),
		];

		let prover_adapter_compositions = [
			CompositionScalarAdapter::new(pair.clone() as Arc<dyn CompositionPolyOS<FI>>),
			CompositionScalarAdapter::new(triple.clone() as Arc<dyn CompositionPolyOS<FI>>),
			CompositionScalarAdapter::new(quad.clone() as Arc<dyn CompositionPolyOS<FI>>),
		];

		let verifier_compositions = [
			pair as Arc<dyn CompositionPolyOS<F>>,
			triple as Arc<dyn CompositionPolyOS<F>>,
			quad as Arc<dyn CompositionPolyOS<F>>,
		];

		for skip_rounds in 0..=max_n_vars {
			let mut proof = Proof {
				transcript: TranscriptWriter::<HasherChallenger<Groestl256>>::new(),
				advice: AdviceWriter::new(),
			};

			let prover_zerocheck_challenges: Vec<FI> =
				proof.transcript.sample_vec(max_n_vars - skip_rounds);

			let mut prover_zerocheck_claims = Vec::new();
			let mut univariate_provers = Vec::new();
			for n_vars in (1..=max_n_vars).rev() {
				let mut multilinears = generate_zero_product_multilinears::<
					PackedType<U, FWitness>,
					PackedType<U, FI>,
				>(&mut rng, n_vars, 2);
				multilinears.extend(generate_zero_product_multilinears(&mut rng, n_vars, 3));
				multilinears.extend(generate_zero_product_multilinears(&mut rng, n_vars, 4));

				let claim = ZerocheckClaim::<FI, _>::new(
					n_vars,
					n_multilinears,
					prover_adapter_compositions.to_vec(),
				)
				.unwrap();

				let prover = UnivariateZerocheck::<
					FDomain,
					PackedType<U, FBase>,
					PackedType<U, FI>,
					_,
					_,
					_,
					_,
				>::new(
					multilinears,
					prover_compositions.to_vec(),
					&prover_zerocheck_challenges
						[(max_n_vars - n_vars).saturating_sub(skip_rounds)..],
					domain_factory.clone(),
					switchover_fn,
					&backend,
				)
				.unwrap();

				prover_zerocheck_claims.push(claim);
				univariate_provers.push(prover);
			}

			let univariate_cnt = prover_zerocheck_claims
				.partition_point(|claim| claim.n_vars() > max_n_vars - skip_rounds);
			let tail_provers = univariate_provers.split_off(univariate_cnt);

			let tail_zerocheck_provers = tail_provers
				.into_iter()
				.map(|prover| {
					let regular_zerocheck = prover.into_regular_zerocheck().unwrap();
					Box::new(regular_zerocheck) as Box<dyn SumcheckProver<_>>
				})
				.collect::<Vec<_>>();

			let prover_univariate_output = batch_prove_zerocheck_univariate_round(
				univariate_provers,
				skip_rounds,
				&mut proof.transcript,
			)
			.unwrap();

			let _ = batch_prove_with_start(
				prover_univariate_output.batch_prove_start,
				tail_zerocheck_provers,
				&mut proof.transcript,
			)
			.unwrap();

			let mut verifier_proof = proof.into_verifier();

			let verifier_zerocheck_challenges: Vec<F> = verifier_proof
				.transcript
				.sample_vec(max_n_vars - skip_rounds);
			assert_eq!(
				prover_zerocheck_challenges
					.into_iter()
					.map(F::from)
					.collect::<Vec<_>>(),
				verifier_zerocheck_challenges
			);

			let mut verifier_zerocheck_claims = Vec::new();
			for n_vars in (1..=max_n_vars).rev() {
				let claim = ZerocheckClaim::<F, _>::new(
					n_vars,
					n_multilinears,
					verifier_compositions.to_vec(),
				)
				.unwrap();

				verifier_zerocheck_claims.push(claim);
			}
			let verifier_univariate_output = batch_verify_zerocheck_univariate_round(
				&verifier_zerocheck_claims[..univariate_cnt],
				skip_rounds,
				&mut verifier_proof.transcript,
			)
			.unwrap();

			let verifier_sumcheck_claims = reduce_to_sumchecks(&verifier_zerocheck_claims).unwrap();
			let _verifier_sumcheck_output = batch_verify_with_start(
				verifier_univariate_output.batch_verify_start,
				&verifier_sumcheck_claims,
				&mut verifier_proof.transcript,
			)
			.unwrap();

			verifier_proof.finalize().unwrap()
		}
	}
}