binius_core/protocols/sumcheck_v2/
univariate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2024 Ulvetanna Inc.

use crate::{
	composition::{BivariateProduct, IndexComposition},
	polynomial::{
		Error as PolynomialError, MultilinearExtension, MultilinearExtensionSpecialized,
		MultilinearPoly, MultilinearQuery,
	},
	protocols::sumcheck_v2::{
		BatchSumcheckOutput, CompositeSumClaim, Error, SumcheckClaim, VerificationError,
	},
};
use binius_field::{ExtensionField, Field, PackedFieldIndexable};
use binius_hal::make_portable_backend;
use binius_math::{EvaluationDomain, EvaluationDomainFactory};
use binius_utils::{bail, sorting::is_sorted_ascending};
use bytemuck::zeroed_vec;
use std::iter;

/// Creates sumcheck claims for the reduction from evaluations of univariatized virtual multilinear oracles to
/// "regular" multilinear evaluations.
///
/// Univariatized virtual multilinear oracles are given by:
/// $$\hat{M}(\hat{u}_1,x_1,\ldots,x_n) = \sum M(u_1,\ldots, u_k, x_1, \ldots, x_n) \cdot L_u(\hat{u}_1)$$
/// It is assumed that `univariatized_multilinear_evals` came directly from a previous sumcheck with a univariate
/// round batching `skip_rounds` variables.
pub fn univariatizing_reduction_claim<F: Field>(
	skip_rounds: usize,
	univariatized_multilinear_evals: &[F],
) -> Result<SumcheckClaim<F, IndexComposition<BivariateProduct, 2>>, Error> {
	let composite_sums =
		univariatizing_reduction_composite_sum_claims(univariatized_multilinear_evals);
	SumcheckClaim::new(skip_rounds, univariatized_multilinear_evals.len() + 1, composite_sums)
}

/// Verify the validity of sumcheck outputs for the reduction zerocheck.
///
/// This takes in the output of the batched univariatizing reduction sumcheck and returns the output
/// that can be used to create multilinear evaluation claims. This simply strips off the evaluation of
/// the multilinear extension of Lagrange polynomials evaluations at `univariate_challenge` (denoted by
/// $\hat{u}_1$) and verifies that this value is correct.
pub fn verify_sumcheck_outputs<F, FDomain>(
	claims: &[SumcheckClaim<F, IndexComposition<BivariateProduct, 2>>],
	univariate_challenge: F,
	evaluation_domain_factory: impl EvaluationDomainFactory<FDomain>,
	sumcheck_output: BatchSumcheckOutput<F>,
) -> Result<BatchSumcheckOutput<F>, Error>
where
	F: Field + ExtensionField<FDomain>,
	FDomain: Field,
{
	let BatchSumcheckOutput {
		challenges: sumcheck_challenges,
		mut multilinear_evals,
	} = sumcheck_output;

	assert_eq!(multilinear_evals.len(), claims.len());

	// Check that the claims are in descending order by n_vars
	if !is_sorted_ascending(claims.iter().map(|claim| claim.n_vars()).rev()) {
		bail!(Error::ClaimsOutOfOrder);
	}

	let max_n_vars = claims
		.first()
		.map(|claim| claim.n_vars())
		.unwrap_or_default();

	assert_eq!(sumcheck_challenges.len(), max_n_vars);

	for (claim, multilinear_evals) in iter::zip(claims, multilinear_evals.iter_mut()) {
		let skip_rounds = claim.n_vars();
		let evaluation_domain = evaluation_domain_factory.create(1 << skip_rounds)?;
		let lagrange_mle =
			lagrange_evals_multilinear_extension(&evaluation_domain, univariate_challenge)?;

		let query = MultilinearQuery::<F, _>::with_full_query(
			&sumcheck_challenges[max_n_vars - skip_rounds..],
			make_portable_backend(),
		)?;
		let expected_last_eval = lagrange_mle.evaluate(query.to_ref())?;

		let multilinear_evals_last = multilinear_evals
			.pop()
			.ok_or(VerificationError::NumberOfFinalEvaluations)?;

		if multilinear_evals_last != expected_last_eval {
			bail!(VerificationError::IncorrectLagrangeMultilinearEvaluation);
		}
	}

	Ok(BatchSumcheckOutput {
		challenges: sumcheck_challenges,
		multilinear_evals,
	})
}

// Helper method to create univariatized multilinear oracle evaluation claims.
// Assumes that multilinear extension of Lagrange evaluations is the last multilinear,
// uses IndexComposition to multiply each multilinear with it (using BivariateProduct).
pub(super) fn univariatizing_reduction_composite_sum_claims<F: Field>(
	univariatized_multilinear_evals: &[F],
) -> Vec<CompositeSumClaim<F, IndexComposition<BivariateProduct, 2>>> {
	let n_multilinears = univariatized_multilinear_evals.len();
	univariatized_multilinear_evals
		.iter()
		.enumerate()
		.map(|(i, &univariatized_multilinear_eval)| {
			let composition =
				IndexComposition::new(n_multilinears + 1, [i, n_multilinears], BivariateProduct {})
					.expect("index composition indice correct by construction");

			CompositeSumClaim {
				composition,
				sum: univariatized_multilinear_eval,
			}
		})
		.collect()
}

// Given EvaluationDomain, evaluates Lagrange coefficients at a challenge point
// and creates a multilinear extension of said evaluations.
pub(super) fn lagrange_evals_multilinear_extension<FDomain, F, P>(
	evaluation_domain: &EvaluationDomain<FDomain>,
	univariate_challenge: F,
) -> Result<MultilinearExtensionSpecialized<P, P>, PolynomialError>
where
	FDomain: Field,
	F: Field + ExtensionField<FDomain>,
	P: PackedFieldIndexable<Scalar = F>,
{
	let lagrange_evals = evaluation_domain.lagrange_evals(univariate_challenge);

	let mut packed = zeroed_vec(lagrange_evals.len().div_ceil(P::WIDTH));
	let scalars = P::unpack_scalars_mut(packed.as_mut_slice());
	scalars[..lagrange_evals.len()].copy_from_slice(lagrange_evals.as_slice());

	Ok(MultilinearExtension::from_values(packed)?.specialize())
}

#[cfg(test)]
mod tests {
	use crate::{
		challenger::new_hasher_challenger,
		polynomial::{
			MultilinearExtension, MultilinearExtensionSpecialized, MultilinearPoly,
			MultilinearQuery,
		},
		protocols::sumcheck_v2::{
			batch_verify,
			prove::{batch_prove, univariate::univariatizing_reduction_prover},
			univariate::{univariatizing_reduction_claim, verify_sumcheck_outputs},
		},
	};
	use binius_field::{
		BinaryField128b, BinaryField16b, ExtensionField, Field, PackedBinaryField1x128b,
		PackedBinaryField8x32b, PackedField,
	};
	use binius_hal::make_portable_backend;
	use binius_hash::GroestlHasher;
	use binius_math::{DefaultEvaluationDomainFactory, EvaluationDomainFactory};
	use rand::{prelude::StdRng, Rng, SeedableRng};
	use std::iter;

	fn generate_poly_helper<P, PE>(
		mut rng: impl Rng,
		n_vars: usize,
		n_multilinears: usize,
	) -> Vec<MultilinearExtensionSpecialized<P, PE>>
	where
		P: PackedField,
		PE: PackedField<Scalar: ExtensionField<P::Scalar>>,
	{
		(0..n_multilinears)
			.map(|_| {
				let values = (0..(1 << n_vars.saturating_sub(P::LOG_WIDTH)))
					.map(|_| PackedField::random(&mut rng))
					.collect();
				MultilinearExtension::from_values(values)
					.unwrap()
					.specialize::<PE>()
			})
			.collect()
	}

	#[test]
	fn test_univariatizing_reduction_end_to_end() {
		type F = BinaryField128b;
		type FDomain = BinaryField16b;
		type P = PackedBinaryField8x32b;
		type PE = PackedBinaryField1x128b;

		let mut rng = StdRng::seed_from_u64(0);
		let challenger = new_hasher_challenger::<_, GroestlHasher<_>>();

		let regular_vars = 3;
		let max_skip_rounds = 3;
		let n_multilinears = 2;

		let evaluation_domain_factory = DefaultEvaluationDomainFactory::<FDomain>::default();

		let univariate_challenge = <F as Field>::random(&mut rng);

		let sumcheck_challenges = (0..regular_vars)
			.map(|_| <F as Field>::random(&mut rng))
			.collect::<Vec<_>>();

		let mut provers = Vec::new();
		let mut all_multilinears = Vec::new();
		let mut all_univariatized_multilinear_evals = Vec::new();
		for skip_rounds in (0..=max_skip_rounds).rev() {
			let n_vars = skip_rounds + regular_vars;

			let multilinears = generate_poly_helper::<P, PE>(&mut rng, n_vars, n_multilinears);
			all_multilinears.push((skip_rounds, multilinears.clone()));

			let domain = evaluation_domain_factory
				.clone()
				.create(1 << skip_rounds)
				.unwrap();

			let univariatized_multilinear_evals = multilinears
				.iter()
				.map(|multilinear| {
					let mut values = Vec::new();
					for hypercube_idx in 0..1 << skip_rounds {
						let mut query = Vec::new();
						for i in 0..skip_rounds {
							query.push(if hypercube_idx & (1 << i) != 0 {
								F::ONE
							} else {
								F::ZERO
							});
						}

						query.extend(&sumcheck_challenges);

						let query = MultilinearQuery::with_full_query(
							query.as_slice(),
							make_portable_backend(),
						)
						.unwrap();
						let mle_eval = multilinear.evaluate(query.to_ref()).unwrap();
						values.push(mle_eval);
					}

					domain
						.extrapolate(values.as_slice(), univariate_challenge)
						.unwrap()
				})
				.collect::<Vec<_>>();

			all_univariatized_multilinear_evals.push(univariatized_multilinear_evals.clone());

			let prover = univariatizing_reduction_prover(
				multilinears,
				univariatized_multilinear_evals.as_slice(),
				univariate_challenge,
				sumcheck_challenges.as_slice(),
				evaluation_domain_factory.clone(),
				make_portable_backend(),
			)
			.unwrap();

			provers.push(prover);
		}

		let (batch_sumcheck_output_prove, proof) =
			batch_prove(provers, &mut challenger.clone()).unwrap();

		for ((skip_rounds, multilinears), multilinear_evals) in
			iter::zip(&all_multilinears, batch_sumcheck_output_prove.multilinear_evals)
		{
			assert_eq!(multilinears.len() + 1, multilinear_evals.len());

			let mut query =
				batch_sumcheck_output_prove.challenges[max_skip_rounds - skip_rounds..].to_vec();
			query.extend(sumcheck_challenges.as_slice());

			let query =
				MultilinearQuery::with_full_query(query.as_slice(), make_portable_backend())
					.unwrap();

			for (multilinear, eval) in iter::zip(multilinears, multilinear_evals) {
				assert_eq!(multilinear.evaluate(query.to_ref()).unwrap(), eval);
			}
		}

		let claims = iter::zip(&all_multilinears, &all_univariatized_multilinear_evals)
			.map(|((skip_rounds, _q), univariatized_multilinear_evals)| {
				univariatizing_reduction_claim(*skip_rounds, univariatized_multilinear_evals)
					.unwrap()
			})
			.collect::<Vec<_>>();

		let batch_sumcheck_output_verify =
			batch_verify(claims.as_slice(), proof, &mut challenger.clone()).unwrap();
		let batch_sumcheck_output_post = verify_sumcheck_outputs(
			claims.as_slice(),
			univariate_challenge,
			evaluation_domain_factory.clone(),
			batch_sumcheck_output_verify,
		)
		.unwrap();

		for ((skip_rounds, multilinears), evals) in
			iter::zip(all_multilinears, batch_sumcheck_output_post.multilinear_evals)
		{
			let mut query =
				batch_sumcheck_output_post.challenges[max_skip_rounds - skip_rounds..].to_vec();
			query.extend(sumcheck_challenges.as_slice());

			let query =
				MultilinearQuery::with_full_query(query.as_slice(), make_portable_backend())
					.unwrap();

			for (multilinear, eval) in iter::zip(multilinears, evals) {
				assert_eq!(multilinear.evaluate(query.to_ref()).unwrap(), eval);
			}
		}
	}
}