binius_core/transcript/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
// Copyright 2024-2025 Irreducible Inc.

//! Objects used to read and write proof strings.
//!
//! A Binius proof consists of the transcript of the simulated interaction between the prover and
//! the verifier. Using the Fiat-Shamir heuristic, the prover and verifier can simulate the
//! verifier's messages, which are deterministically computed based on the sequence of prover
//! messages and calls to sample verifier challenges. The interaction consists of two parallel
//! tapes, the _transcript_ tape and the _advice_ tape. The values in the transcript tape affect
//! the Fiat-Shamir state, whereas values in the advice tape do not. **The advice tape must only be
//! used for values that were previously committed to in the transcript tape.** For example, it is
//! secure to write a Merkle tree root to the transcript tape, sample a random index, then provide
//! the Merkle leaf opening at that index in the advice tape.

mod error;

use std::{iter::repeat_with, slice};

use binius_field::{deserialize_canonical, serialize_canonical, PackedField, TowerField};
use binius_utils::serialization::{DeserializeBytes, SerializeBytes};
use bytes::{buf::UninitSlice, Buf, BufMut, Bytes, BytesMut};
pub use error::Error;
use tracing::warn;

use crate::fiat_shamir::{CanSample, CanSampleBits, Challenger};

/// Prover transcript over some Challenger that writes to the internal tape and `CanSample<F: TowerField>`
///
/// A Transcript is an abstraction over Fiat-Shamir so the prover and verifier can send and receive
/// data.
#[derive(Debug)]
pub struct ProverTranscript<Challenger> {
	combined: FiatShamirBuf<BytesMut, Challenger>,
	debug_assertions: bool,
}

/// Verifier transcript over some Challenger that reads from the internal tape and `CanSample<F: TowerField>`
///
/// You must manually call the destructor with `finalize()` to check anything that's written is
/// fully read out
#[derive(Debug)]
pub struct VerifierTranscript<Challenger> {
	combined: FiatShamirBuf<Bytes, Challenger>,
	debug_assertions: bool,
}

#[derive(Debug, Default)]
struct FiatShamirBuf<Inner, Challenger> {
	buffer: Inner,
	challenger: Challenger,
}

impl<Inner: Buf, Challenger_: Challenger> Buf for FiatShamirBuf<Inner, Challenger_> {
	fn remaining(&self) -> usize {
		self.buffer.remaining()
	}

	fn chunk(&self) -> &[u8] {
		self.buffer.chunk()
	}

	fn advance(&mut self, cnt: usize) {
		assert!(cnt <= self.buffer.remaining());
		// Get the slice that was written to the inner buf, observe that and advance
		let readable = self.buffer.chunk();
		// Because our internal buffer is created from vec, this should never happen.
		assert!(cnt <= readable.len());
		self.challenger.observer().put_slice(&readable[..cnt]);
		self.buffer.advance(cnt);
	}
}

unsafe impl<Inner: BufMut, Challenger_: Challenger> BufMut for FiatShamirBuf<Inner, Challenger_> {
	fn remaining_mut(&self) -> usize {
		self.buffer.remaining_mut()
	}

	unsafe fn advance_mut(&mut self, cnt: usize) {
		assert!(cnt <= self.buffer.remaining_mut());
		let written = self.buffer.chunk_mut();
		// Because out internal buffer is BytesMut cnt <= written.len(), but adding as per implementation notes
		assert!(cnt <= written.len());

		// NOTE: This is the unsafe part, you are reading the next cnt bytes on the assumption that
		// caller has ensured us the next cnt bytes are initialized.
		let written: &[u8] = slice::from_raw_parts(written.as_mut_ptr(), cnt);

		self.challenger.observer().put_slice(written);
		self.buffer.advance_mut(cnt);
	}

	fn chunk_mut(&mut self) -> &mut UninitSlice {
		self.buffer.chunk_mut()
	}
}

impl<Challenger_: Default + Challenger> ProverTranscript<Challenger_> {
	/// Creates a new prover transcript.
	///
	/// By default debug assertions are set to the feature flag `debug_assertions`. You may also
	/// change the debug flag with [`Self::set_debug`].
	pub fn new() -> Self {
		Self {
			combined: Default::default(),
			debug_assertions: cfg!(debug_assertions),
		}
	}

	pub fn into_verifier(self) -> VerifierTranscript<Challenger_> {
		VerifierTranscript::new(self.finalize())
	}
}

impl<Challenger_: Default + Challenger> Default for ProverTranscript<Challenger_> {
	fn default() -> Self {
		Self::new()
	}
}

impl<Challenger_: Challenger> ProverTranscript<Challenger_> {
	pub fn finalize(self) -> Vec<u8> {
		self.combined.buffer.to_vec()
	}

	/// Sets the debug flag.
	///
	/// This flag is used to enable debug assertions in the [`TranscriptReader`] and
	/// [`TranscriptWriter`] methods.
	pub fn set_debug(&mut self, debug: bool) {
		self.debug_assertions = debug;
	}

	/// Returns a writeable buffer that only observes the data written, without writing it to the
	/// proof tape.
	///
	/// This method should be used to observe the input statement.
	pub fn observe<'a, 'b>(&'a mut self) -> TranscriptWriter<'b, impl BufMut + 'b>
	where
		'a: 'b,
	{
		TranscriptWriter {
			buffer: self.combined.challenger.observer(),
			debug_assertions: self.debug_assertions,
		}
	}

	/// Returns a writeable buffer that only writes the data to the proof tape, without observing it.
	///
	/// This method should only be used to write openings of commitments that were already written
	/// to the transcript as an observed message. For example, in the FRI protocol, the prover sends
	/// a Merkle tree root as a commitment, and later sends leaf openings. The leaf openings should
	/// be written using [`Self::decommitment`] because they are verified with respect to the
	/// previously sent Merkle root.
	pub fn decommitment(&mut self) -> TranscriptWriter<impl BufMut> {
		TranscriptWriter {
			buffer: &mut self.combined.buffer,
			debug_assertions: self.debug_assertions,
		}
	}

	/// Returns a writeable buffer that observes the data written and writes it to the proof tape.
	///
	/// This method should be used by default to write prover messages in an interactive protocol.
	pub fn message<'a, 'b>(&'a mut self) -> TranscriptWriter<'b, impl BufMut>
	where
		'a: 'b,
	{
		TranscriptWriter {
			buffer: &mut self.combined,
			debug_assertions: self.debug_assertions,
		}
	}
}

impl<Challenger_: Default + Challenger> VerifierTranscript<Challenger_> {
	pub fn new(vec: Vec<u8>) -> Self {
		Self {
			combined: FiatShamirBuf {
				challenger: Challenger_::default(),
				buffer: Bytes::from(vec),
			},
			debug_assertions: cfg!(debug_assertions),
		}
	}
}

impl<Challenger_: Challenger> VerifierTranscript<Challenger_> {
	pub fn finalize(self) -> Result<(), Error> {
		if self.combined.buffer.has_remaining() {
			return Err(Error::TranscriptNotEmpty {
				remaining: self.combined.buffer.remaining(),
			});
		}
		Ok(())
	}

	pub fn set_debug(&mut self, debug: bool) {
		self.debug_assertions = debug;
	}

	/// Returns a writable buffer that only observes the data written, without reading it from the
	/// proof tape.
	///
	/// This method should be used to observe the input statement.
	pub fn observe<'a, 'b>(&'a mut self) -> TranscriptWriter<'b, impl BufMut + 'b>
	where
		'a: 'b,
	{
		TranscriptWriter {
			buffer: self.combined.challenger.observer(),
			debug_assertions: self.debug_assertions,
		}
	}

	/// Returns a readable buffer that only reads the data from the proof tape, without observing it.
	///
	/// This method should only be used to read advice that was previously written to the transcript as an observed message.
	pub fn decommitment(&mut self) -> TranscriptReader<impl Buf + '_> {
		TranscriptReader {
			buffer: &mut self.combined.buffer,
			debug_assertions: self.debug_assertions,
		}
	}

	/// Returns a readable buffer that observes the data read.
	///
	/// This method should be used by default to read verifier messages in an interactive protocol.
	pub fn message<'a, 'b>(&'a mut self) -> TranscriptReader<'b, impl Buf>
	where
		'a: 'b,
	{
		TranscriptReader {
			buffer: &mut self.combined,
			debug_assertions: self.debug_assertions,
		}
	}
}

// Useful warnings to see if we are neglecting to read any advice or transcript entirely
impl<Challenger> Drop for VerifierTranscript<Challenger> {
	fn drop(&mut self) {
		if self.combined.buffer.has_remaining() {
			warn!(
				"Transcript reader is not fully read out: {:?} bytes left",
				self.combined.buffer.remaining()
			)
		}
	}
}

pub struct TranscriptReader<'a, B: Buf> {
	buffer: &'a mut B,
	debug_assertions: bool,
}

impl<B: Buf> TranscriptReader<'_, B> {
	pub fn buffer(&mut self) -> &mut B {
		self.buffer
	}

	pub fn read<T: DeserializeBytes>(&mut self) -> Result<T, Error> {
		T::deserialize(self.buffer()).map_err(Into::into)
	}

	pub fn read_vec<T: DeserializeBytes>(&mut self, n: usize) -> Result<Vec<T>, Error> {
		let mut buffer = self.buffer();
		repeat_with(move || T::deserialize(&mut buffer).map_err(Into::into))
			.take(n)
			.collect()
	}

	pub fn read_bytes(&mut self, buf: &mut [u8]) -> Result<(), Error> {
		let buffer = self.buffer();
		if buffer.remaining() < buf.len() {
			return Err(Error::NotEnoughBytes);
		}
		buffer.copy_to_slice(buf);
		Ok(())
	}

	pub fn read_scalar<F: TowerField>(&mut self) -> Result<F, Error> {
		let mut out = F::default();
		self.read_scalar_slice_into(slice::from_mut(&mut out))?;
		Ok(out)
	}

	pub fn read_scalar_slice_into<F: TowerField>(&mut self, buf: &mut [F]) -> Result<(), Error> {
		let mut buffer = self.buffer();
		for elem in buf {
			*elem = deserialize_canonical(&mut buffer)?;
		}
		Ok(())
	}

	pub fn read_scalar_slice<F: TowerField>(&mut self, len: usize) -> Result<Vec<F>, Error> {
		let mut elems = vec![F::default(); len];
		self.read_scalar_slice_into(&mut elems)?;
		Ok(elems)
	}

	pub fn read_packed<P: PackedField<Scalar: TowerField>>(&mut self) -> Result<P, Error> {
		P::try_from_fn(|_| self.read_scalar())
	}

	pub fn read_packed_slice<P: PackedField<Scalar: TowerField>>(
		&mut self,
		len: usize,
	) -> Result<Vec<P>, Error> {
		let mut packed = Vec::with_capacity(len);
		for _ in 0..len {
			packed.push(self.read_packed()?);
		}
		Ok(packed)
	}

	pub fn read_debug(&mut self, msg: &str) {
		if self.debug_assertions {
			let msg_bytes = msg.as_bytes();
			let mut buffer = vec![0; msg_bytes.len()];
			assert!(self.read_bytes(&mut buffer).is_ok());
			assert_eq!(msg_bytes, buffer);
		}
	}
}

pub struct TranscriptWriter<'a, B: BufMut> {
	buffer: &'a mut B,
	debug_assertions: bool,
}

impl<B: BufMut> TranscriptWriter<'_, B> {
	pub fn buffer(&mut self) -> &mut B {
		self.buffer
	}

	pub fn write<T: SerializeBytes>(&mut self, value: &T) {
		value
			.serialize(self.buffer())
			.expect("TODO: propagate error")
	}

	pub fn write_slice<T: SerializeBytes>(&mut self, values: &[T]) {
		let mut buffer = self.buffer();
		for value in values {
			value.serialize(&mut buffer).expect("TODO: propagate error")
		}
	}

	pub fn write_bytes(&mut self, data: &[u8]) {
		self.buffer().put_slice(data);
	}

	pub fn write_scalar<F: TowerField>(&mut self, f: F) {
		self.write_scalar_slice(slice::from_ref(&f));
	}

	pub fn write_scalar_slice<F: TowerField>(&mut self, elems: &[F]) {
		let mut buffer = self.buffer();
		for elem in elems {
			serialize_canonical(*elem, &mut buffer).expect("TODO: propagate error");
		}
	}

	pub fn write_packed<P: PackedField<Scalar: TowerField>>(&mut self, packed: P) {
		for scalar in packed.iter() {
			self.write_scalar(scalar);
		}
	}

	pub fn write_packed_slice<P: PackedField<Scalar: TowerField>>(&mut self, packed_slice: &[P]) {
		for &packed in packed_slice {
			self.write_packed(packed)
		}
	}

	pub fn write_debug(&mut self, msg: &str) {
		if self.debug_assertions {
			self.write_bytes(msg.as_bytes())
		}
	}
}

impl<F, Challenger_> CanSample<F> for VerifierTranscript<Challenger_>
where
	F: TowerField,
	Challenger_: Challenger,
{
	fn sample(&mut self) -> F {
		deserialize_canonical(self.combined.challenger.sampler())
			.expect("challenger has infinite buffer")
	}
}

impl<F, Challenger_> CanSample<F> for ProverTranscript<Challenger_>
where
	F: TowerField,
	Challenger_: Challenger,
{
	fn sample(&mut self) -> F {
		deserialize_canonical(self.combined.challenger.sampler())
			.expect("challenger has infinite buffer")
	}
}

fn sample_bits_reader<Reader: Buf>(mut reader: Reader, bits: usize) -> usize {
	let bits = bits.min(usize::BITS as usize);

	let bytes_to_sample = bits.div_ceil(8);

	let mut bytes = [0u8; std::mem::size_of::<usize>()];

	reader.copy_to_slice(&mut bytes[..bytes_to_sample]);

	let unmasked = usize::from_le_bytes(bytes);
	let mask = 1usize.checked_shl(bits as u32);
	let mask = match mask {
		Some(x) => x - 1,
		None => usize::MAX,
	};
	mask & unmasked
}

impl<Challenger_> CanSampleBits<usize> for VerifierTranscript<Challenger_>
where
	Challenger_: Challenger,
{
	fn sample_bits(&mut self, bits: usize) -> usize {
		sample_bits_reader(self.combined.challenger.sampler(), bits)
	}
}

impl<Challenger_> CanSampleBits<usize> for ProverTranscript<Challenger_>
where
	Challenger_: Challenger,
{
	fn sample_bits(&mut self, bits: usize) -> usize {
		sample_bits_reader(self.combined.challenger.sampler(), bits)
	}
}

/// Helper functions for serializing native types
pub fn read_u64<B: Buf>(transcript: &mut TranscriptReader<B>) -> Result<u64, Error> {
	let mut as_bytes = [0; size_of::<u64>()];
	transcript.read_bytes(&mut as_bytes)?;
	Ok(u64::from_le_bytes(as_bytes))
}

pub fn write_u64<B: BufMut>(transcript: &mut TranscriptWriter<B>, n: u64) {
	transcript.write_bytes(&n.to_le_bytes());
}

#[cfg(test)]
mod tests {
	use binius_field::{
		AESTowerField128b, AESTowerField16b, AESTowerField32b, AESTowerField8b, BinaryField128b,
		BinaryField128bPolyval, BinaryField32b, BinaryField64b, BinaryField8b,
	};
	use groestl_crypto::Groestl256;
	use rand::{thread_rng, RngCore};

	use super::*;
	use crate::fiat_shamir::HasherChallenger;

	#[test]
	fn test_transcripting() {
		let mut prover_transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();
		let mut writable = prover_transcript.message();

		writable.write_scalar(BinaryField8b::new(0x96));
		writable.write_scalar(BinaryField32b::new(0xDEADBEEF));
		writable.write_scalar(BinaryField128b::new(0x55669900112233550000CCDDFFEEAABB));
		let sampled_fanpaar1: BinaryField128b = prover_transcript.sample();

		let mut writable = prover_transcript.message();

		writable.write_scalar(AESTowerField8b::new(0x52));
		writable.write_scalar(AESTowerField32b::new(0x12345678));
		writable.write_scalar(AESTowerField128b::new(0xDDDDBBBBCCCCAAAA2222999911117777));

		let sampled_aes1: AESTowerField16b = prover_transcript.sample();

		prover_transcript
			.message()
			.write_scalar(BinaryField128bPolyval::new(0xFFFF12345678DDDDEEEE87654321AAAA));
		let sampled_polyval1: BinaryField128bPolyval = prover_transcript.sample();

		let mut verifier_transcript = prover_transcript.into_verifier();
		let mut readable = verifier_transcript.message();

		let fp_8: BinaryField8b = readable.read_scalar().unwrap();
		let fp_32: BinaryField32b = readable.read_scalar().unwrap();
		let fp_128: BinaryField128b = readable.read_scalar().unwrap();

		assert_eq!(fp_8.val(), 0x96);
		assert_eq!(fp_32.val(), 0xDEADBEEF);
		assert_eq!(fp_128.val(), 0x55669900112233550000CCDDFFEEAABB);

		let sampled_fanpaar1_res: BinaryField128b = verifier_transcript.sample();

		assert_eq!(sampled_fanpaar1_res, sampled_fanpaar1);

		let mut readable = verifier_transcript.message();

		let aes_8: AESTowerField8b = readable.read_scalar().unwrap();
		let aes_32: AESTowerField32b = readable.read_scalar().unwrap();
		let aes_128: AESTowerField128b = readable.read_scalar().unwrap();

		assert_eq!(aes_8.val(), 0x52);
		assert_eq!(aes_32.val(), 0x12345678);
		assert_eq!(aes_128.val(), 0xDDDDBBBBCCCCAAAA2222999911117777);

		let sampled_aes_res: AESTowerField16b = verifier_transcript.sample();

		assert_eq!(sampled_aes_res, sampled_aes1);

		let polyval_128: BinaryField128bPolyval =
			verifier_transcript.message().read_scalar().unwrap();
		assert_eq!(polyval_128, BinaryField128bPolyval::new(0xFFFF12345678DDDDEEEE87654321AAAA));

		let sampled_polyval_res: BinaryField128bPolyval = verifier_transcript.sample();
		assert_eq!(sampled_polyval_res, sampled_polyval1);

		verifier_transcript.finalize().unwrap();
	}

	#[test]
	fn test_advicing() {
		let mut prover_transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();
		let mut advice_writer = prover_transcript.decommitment();

		advice_writer.write_scalar(BinaryField8b::new(0x96));
		advice_writer.write_scalar(BinaryField32b::new(0xDEADBEEF));
		advice_writer.write_scalar(BinaryField128b::new(0x55669900112233550000CCDDFFEEAABB));

		advice_writer.write_scalar(AESTowerField8b::new(0x52));
		advice_writer.write_scalar(AESTowerField32b::new(0x12345678));
		advice_writer.write_scalar(AESTowerField128b::new(0xDDDDBBBBCCCCAAAA2222999911117777));

		advice_writer.write_scalar(BinaryField128bPolyval::new(0xFFFF12345678DDDDEEEE87654321AAAA));

		let mut verifier_transcript = prover_transcript.into_verifier();
		let mut advice_reader = verifier_transcript.decommitment();

		let fp_8: BinaryField8b = advice_reader.read_scalar().unwrap();
		let fp_32: BinaryField32b = advice_reader.read_scalar().unwrap();
		let fp_128: BinaryField128b = advice_reader.read_scalar().unwrap();

		assert_eq!(fp_8.val(), 0x96);
		assert_eq!(fp_32.val(), 0xDEADBEEF);
		assert_eq!(fp_128.val(), 0x55669900112233550000CCDDFFEEAABB);

		let aes_8: AESTowerField8b = advice_reader.read_scalar().unwrap();
		let aes_32: AESTowerField32b = advice_reader.read_scalar().unwrap();
		let aes_128: AESTowerField128b = advice_reader.read_scalar().unwrap();

		assert_eq!(aes_8.val(), 0x52);
		assert_eq!(aes_32.val(), 0x12345678);
		assert_eq!(aes_128.val(), 0xDDDDBBBBCCCCAAAA2222999911117777);

		let polyval_128: BinaryField128bPolyval = advice_reader.read_scalar().unwrap();
		assert_eq!(polyval_128, BinaryField128bPolyval::new(0xFFFF12345678DDDDEEEE87654321AAAA));

		verifier_transcript.finalize().unwrap();
	}

	#[test]
	fn test_challenger_and_observing() {
		let mut taped_transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();
		let mut untaped_transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();
		let mut challenger = HasherChallenger::<Groestl256>::default();

		const NUM_SAMPLING: usize = 32;
		let mut random_bytes = [0u8; NUM_SAMPLING * 8];
		thread_rng().fill_bytes(&mut random_bytes);
		let mut sampled_arrays = [[0u8; 8]; NUM_SAMPLING];

		for i in 0..NUM_SAMPLING {
			taped_transcript
				.message()
				.write_scalar(BinaryField64b::new(u64::from_le_bytes(
					random_bytes[i * 8..i * 8 + 8].to_vec().try_into().unwrap(),
				)));
			untaped_transcript
				.observe()
				.write_scalar(BinaryField64b::new(u64::from_le_bytes(
					random_bytes[i * 8..i * 8 + 8].to_vec().try_into().unwrap(),
				)));
			challenger
				.observer()
				.put_slice(&random_bytes[i * 8..i * 8 + 8]);

			let sampled_out_transcript1: BinaryField64b = taped_transcript.sample();
			let sampled_out_transcript2: BinaryField64b = untaped_transcript.sample();
			let mut challenger_out = [0u8; 8];
			challenger.sampler().copy_to_slice(&mut challenger_out);
			assert_eq!(challenger_out, sampled_out_transcript1.val().to_le_bytes());
			assert_eq!(challenger_out, sampled_out_transcript2.val().to_le_bytes());
			sampled_arrays[i] = challenger_out;
		}

		let mut taped_transcript = taped_transcript.into_verifier();

		assert!(untaped_transcript.finalize().is_empty());

		for array in sampled_arrays.into_iter() {
			let _: BinaryField64b = taped_transcript.message().read_scalar().unwrap();
			let sampled_out_transcript: BinaryField64b = taped_transcript.sample();

			assert_eq!(array, sampled_out_transcript.val().to_le_bytes());
		}

		taped_transcript.finalize().unwrap();
	}

	#[test]
	fn test_transcript_debug() {
		let mut transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();

		transcript.message().write_debug("test_transcript_debug");
		transcript
			.into_verifier()
			.message()
			.read_debug("test_transcript_debug");
	}

	#[test]
	#[should_panic]
	fn test_transcript_debug_fail() {
		let mut transcript = ProverTranscript::<HasherChallenger<Groestl256>>::new();

		transcript.message().write_debug("test_transcript_debug");
		transcript
			.into_verifier()
			.message()
			.read_debug("test_transcript_debug_should_fail");
	}
}