binius_core/transparent/
shift_ind.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Copyright 2024-2025 Irreducible Inc.

use binius_field::{util::eq, Field, PackedFieldIndexable, TowerField};
use binius_math::MultilinearExtension;
use binius_utils::bail;

use crate::{
	oracle::ShiftVariant,
	polynomial::{Error, MultivariatePoly},
};

/// Represents MLE of shift indicator $f_{b, o}(X, Y)$ on $2*b$ variables
/// partially evaluated at $Y = r$
///
/// # Formal Definition
/// Let $x, y \in \{0, 1\}^b$
/// If ShiftVariant is CircularLeft:
///     * $f(x, y) = 1$ if $\{y\} - \{o\} \equiv \{x\} (\text{mod } 2^b)$
///     * $f(x, y) = 0$ otw
///
/// Else if ShiftVariant is LogicalLeft:
///    * $f(x, y) = 1$ if $\{y\} - \{o\} \equiv \{x\}$
///    * $f(x, y) = 0$ otw
///
/// Else, ShiftVariant is LogicalRight:
///    * $f(x, y) = 1$ if $\{y\} + \{o\} \equiv \{x\}$
///    * $f(x, y) = 0$ otw
///
/// where:
///    * $\{x\}$ is the integer representation of the hypercube point $x \in \{0, 1\}^b$,
///    * $b$ is the block size parameter'
///    * $o$ is the shift offset parameter.
///
/// Observe $\forall x \in \{0, 1\}^b$, there is at most one $y \in \{0, 1\}^b$ s.t. $f(x, y) = 1$
///
/// # Intuition
/// Consider the lexicographic ordering of each point on the $b$-variate hypercube into a $2^b$ length array.
/// Thus, we can give each element on the hypercube a unique index $\in \{0, \ldots, 2^b - 1\}$
/// Let $x, y \in \{0, 1\}^{b}$ be s.t. $\{x\} = i$ and $\{y\} = j$
/// $f(x, y) = 1$ iff:
///     * taking $o$ steps from $j$ gets you to $i$
/// (wrap around if ShiftVariant is Circular + direction of steps depending on ShiftVariant's direction)
///
/// # Note
/// CircularLeft corresponds to the shift indicator in Section 4.3.
/// LogicalLeft corresponds to the shift prime indicator in Section 4.3.
/// LogicalRight corresponds to the shift double prime indicator in Section 4.3.
///
/// [DP23]: https://eprint.iacr.org/2023/1784
///
/// # Example
/// Let $b$ = 2, $o$ = 1, variant = CircularLeft.
/// The hypercube points (0, 0), (1, 0), (0, 1), (1, 1) can be lexicographically
/// ordered into an array [(0, 0), (1, 0), (0, 1), (1, 1)]
/// Then, by considering the index of each hypercube point in the above array, we observe:
///     * $f((0, 0), (1, 0)) = 1$ because $1 - 1 = 0$ mod $4$
///     * $f((1, 0), (0, 1)) = 1$ because $2 - 1 = 1$ mod $4$
///     * $f((0, 1), (1, 1)) = 1$ because $3 - 1 = 2$ mod $4$
///     * $f((1, 1), (0, 0)) = 1$ because $0 - 1 = 3$ mod $4$
/// and every other pair of $b$-variate hypercube points $x, y \in \{0, 1\}^{b}$ is s.t. f(x, y) = 0.
/// Using these shift params, if f = [[a_i, b_i, c_i, d_i]_i], then shifted_f = [[b_i, c_i, d_i, a_i]_i]
///
/// # Example
/// Let $b$ = 2, $o$ = 1, variant = LogicalLeft.
/// The hypercube points (0, 0), (1, 0), (0, 1), (1, 1) can be lexicographically
/// ordered into an array [(0, 0), (1, 0), (0, 1), (1, 1)]
/// Then, by considering the index of each hypercube point in the above array, we observe:
///     * $f((0, 0), (1, 0)) = 1$ because $1 - 1 = 0$
///     * $f((1, 0), (0, 1)) = 1$ because $2 - 1 = 1$
///     * $f((0, 1), (1, 1)) = 1$ because $3 - 1 = 2$
/// and every other pair of $b$-variate hypercube points $x, y \in \{0, 1\}^{b}$ is s.t. f(x, y) = 0.
/// Using these shift params, if f = [[a_i, b_i, c_i, d_i]_i], then shifted_f = [[b_i, c_i, d_i, 0]_i]
///
/// # Example
/// Let $b$ = 2, $o$ = 1, variant = LogicalRight.
/// The hypercube points (0, 0), (1, 0), (0, 1), (1, 1) can be lexicographically
/// ordered into an array [(0, 0), (1, 0), (0, 1), (1, 1)]
/// Then, by considering the index of each hypercube point in the above array, we observe:
///     * $f((1, 0), (0, 0)) = 1$ because $0 + 1 = 1$
///     * $f((0, 1), (1, 0)) = 1$ because $1 + 1 = 2$
///     * $f((1, 1), (0, 1)) = 1$ because $2 + 1 = 3$
/// and every other pair of $b$-variate hypercube points $x, y \in \{0, 1\}^{b}$ is s.t. f(x, y) = 0.
/// Using these shift params, if f = [[a_i, b_i, c_i, d_i]_i], then shifted_f = [[0, a_i, b_i, c_i]_i]
#[derive(Debug, Clone)]
pub struct ShiftIndPartialEval<F: Field> {
	/// Block size $b$, also the number of variables
	block_size: usize,
	/// shift offset $o \in \{1, \ldots, 2^b - 1\}$
	shift_offset: usize,
	/// Shift variant
	shift_variant: ShiftVariant,
	/// partial evaluation point $r$, typically lowest $b$ coords
	/// from a larger challenge point.
	r: Vec<F>,
}

impl<F: Field> ShiftIndPartialEval<F> {
	pub fn new(
		block_size: usize,
		shift_offset: usize,
		shift_variant: ShiftVariant,
		r: Vec<F>,
	) -> Result<Self, Error> {
		assert_valid_shift_ind_args(block_size, shift_offset, &r)?;
		Ok(Self {
			block_size,
			shift_offset,
			r,
			shift_variant,
		})
	}

	fn multilinear_extension_circular<P>(&self) -> Result<MultilinearExtension<P>, Error>
	where
		P: PackedFieldIndexable<Scalar = F>,
	{
		let (ps, pps) =
			partial_evaluate_hypercube_impl::<P>(self.block_size, self.shift_offset, &self.r)?;
		let values = ps
			.iter()
			.zip(pps)
			.map(|(p, pp)| *p + pp)
			.collect::<Vec<_>>();
		Ok(MultilinearExtension::from_values(values)?)
	}

	fn multilinear_extension_logical_left<P>(&self) -> Result<MultilinearExtension<P>, Error>
	where
		P: PackedFieldIndexable<Scalar = F>,
	{
		let (ps, _) =
			partial_evaluate_hypercube_impl::<P>(self.block_size, self.shift_offset, &self.r)?;
		Ok(MultilinearExtension::from_values(ps)?)
	}

	fn multilinear_extension_logical_right<P>(&self) -> Result<MultilinearExtension<P>, Error>
	where
		P: PackedFieldIndexable<Scalar = F>,
	{
		let right_shift_offset = get_left_shift_offset(self.block_size, self.shift_offset);
		let (_, pps) =
			partial_evaluate_hypercube_impl::<P>(self.block_size, right_shift_offset, &self.r)?;
		Ok(MultilinearExtension::from_values(pps)?)
	}

	/// Evaluates this partially evaluated circular shift indicator MLE $f(X, r)$
	/// over the entire $b$-variate hypercube
	pub fn multilinear_extension<P>(&self) -> Result<MultilinearExtension<P>, Error>
	where
		P: PackedFieldIndexable<Scalar = F>,
	{
		match self.shift_variant {
			ShiftVariant::CircularLeft => self.multilinear_extension_circular(),
			ShiftVariant::LogicalLeft => self.multilinear_extension_logical_left(),
			ShiftVariant::LogicalRight => self.multilinear_extension_logical_right(),
		}
	}

	/// Evaluates this partial circular shift indicator MLE $f(X, r)$ with $X=x$
	fn evaluate_at_point(&self, x: &[F]) -> Result<F, Error> {
		if x.len() != self.block_size {
			bail!(Error::IncorrectQuerySize {
				expected: self.block_size,
			});
		}

		let left_shift_offset = match self.shift_variant {
			ShiftVariant::CircularLeft => self.shift_offset,
			ShiftVariant::LogicalLeft => self.shift_offset,
			ShiftVariant::LogicalRight => get_left_shift_offset(self.block_size, self.shift_offset),
		};

		let (p_res, pp_res) =
			evaluate_shift_ind_help(self.block_size, left_shift_offset, x, &self.r)?;

		match self.shift_variant {
			ShiftVariant::CircularLeft => Ok(p_res + pp_res),
			ShiftVariant::LogicalLeft => Ok(p_res),
			ShiftVariant::LogicalRight => Ok(pp_res),
		}
	}
}

impl<F: TowerField> MultivariatePoly<F> for ShiftIndPartialEval<F> {
	fn n_vars(&self) -> usize {
		self.block_size
	}

	fn degree(&self) -> usize {
		self.block_size
	}

	fn evaluate(&self, query: &[F]) -> Result<F, Error> {
		self.evaluate_at_point(query)
	}

	fn binary_tower_level(&self) -> usize {
		F::TOWER_LEVEL
	}
}

/// Gets right shift offset from left shift offset
fn get_left_shift_offset(block_size: usize, right_shift_offset: usize) -> usize {
	(1 << block_size) - right_shift_offset
}

/// Checks validity of shift indicator arguments
fn assert_valid_shift_ind_args<F: Field>(
	block_size: usize,
	shift_offset: usize,
	partial_query_point: &[F],
) -> Result<(), Error> {
	if partial_query_point.len() != block_size {
		bail!(Error::IncorrectQuerySize {
			expected: block_size,
		});
	}
	if shift_offset == 0 || shift_offset >= 1 << block_size {
		bail!(Error::InvalidShiftOffset {
			max_shift_offset: (1 << block_size) - 1,
			shift_offset,
		});
	}

	Ok(())
}

/// Evaluates the LogicalRightShift and LogicalLeftShift indicators at the point $(x, y)$
///
/// Requires length of x (and y) is block_size
/// Requires shift offset is at most $2^b$ where $b$ is block_size
fn evaluate_shift_ind_help<F: Field>(
	block_size: usize,
	shift_offset: usize,
	x: &[F],
	y: &[F],
) -> Result<(F, F), Error> {
	if x.len() != block_size {
		bail!(Error::IncorrectQuerySize {
			expected: block_size,
		});
	}
	assert_valid_shift_ind_args(block_size, shift_offset, y)?;

	let (mut s_ind_p, mut s_ind_pp) = (F::ONE, F::ZERO);
	let (mut temp_p, mut temp_pp) = (F::default(), F::default());
	(0..block_size).for_each(|k| {
		let o_k = shift_offset >> k;
		let product = x[k] * y[k];
		if o_k % 2 == 1 {
			temp_p = (y[k] - product) * s_ind_p;
			temp_pp = (x[k] - product) * s_ind_p + eq(x[k], y[k]) * s_ind_pp;
		} else {
			temp_p = eq(x[k], y[k]) * s_ind_p + (y[k] - product) * s_ind_pp;
			temp_pp = (x[k] - product) * s_ind_pp;
		}
		// roll over results
		s_ind_p = temp_p;
		s_ind_pp = temp_pp;
	});

	Ok((s_ind_p, s_ind_pp))
}

/// Evaluates the LogicalRightShift and LogicalLeftShift indicators over the entire hypercube
///
/// Total time is O(2^b) field operations (optimal in light of output size)
/// Requires length of $r$ is exactly block_size
/// Requires shift offset is at most $2^b$ where $b$ is block_size
fn partial_evaluate_hypercube_impl<P: PackedFieldIndexable>(
	block_size: usize,
	shift_offset: usize,
	r: &[P::Scalar],
) -> Result<(Vec<P>, Vec<P>), Error> {
	assert_valid_shift_ind_args(block_size, shift_offset, r)?;
	let mut s_ind_p = vec![P::one(); 1 << (block_size - P::LOG_WIDTH)];
	let mut s_ind_pp = vec![P::zero(); 1 << (block_size - P::LOG_WIDTH)];

	partial_evaluate_hypercube_with_buffers(
		block_size.min(P::LOG_WIDTH),
		shift_offset,
		r,
		P::unpack_scalars_mut(&mut s_ind_p),
		P::unpack_scalars_mut(&mut s_ind_pp),
	);
	if block_size > P::LOG_WIDTH {
		partial_evaluate_hypercube_with_buffers(
			block_size - P::LOG_WIDTH,
			shift_offset >> P::LOG_WIDTH,
			&r[P::LOG_WIDTH..],
			&mut s_ind_p,
			&mut s_ind_pp,
		);
	}

	Ok((s_ind_p, s_ind_pp))
}

fn partial_evaluate_hypercube_with_buffers<P: PackedFieldIndexable>(
	block_size: usize,
	shift_offset: usize,
	r: &[P::Scalar],
	s_ind_p: &mut [P],
	s_ind_pp: &mut [P],
) {
	for k in 0..block_size {
		// complexity: just two multiplications per iteration!
		if (shift_offset >> k) % 2 == 1 {
			for i in 0..(1 << k) {
				let mut pp_lo = s_ind_pp[i];
				let mut pp_hi = pp_lo * r[k];

				pp_lo -= pp_hi;

				let p_lo = s_ind_p[i];
				let p_hi = p_lo * r[k];
				pp_hi += p_lo - p_hi; // * 1 - r

				s_ind_pp[i] = pp_lo;
				s_ind_pp[1 << k | i] = pp_hi;

				s_ind_p[i] = p_hi;
				s_ind_p[1 << k | i] = P::zero(); // clear upper half
			}
		} else {
			for i in 0..(1 << k) {
				let mut p_lo = s_ind_p[i];
				let p_hi = p_lo * r[k];
				p_lo -= p_hi;

				let pp_lo = s_ind_pp[i];
				let pp_hi = pp_lo * (P::one() - r[k]);
				p_lo += pp_lo - pp_hi;

				s_ind_p[i] = p_lo;
				s_ind_p[1 << k | i] = p_hi;

				s_ind_pp[i] = P::zero(); // clear lower half
				s_ind_pp[1 << k | i] = pp_hi;
			}
		}
	}
}

#[cfg(test)]
mod tests {
	use std::iter::repeat_with;

	use binius_field::{BinaryField32b, PackedBinaryField4x32b};
	use binius_hal::{make_portable_backend, ComputationBackendExt};
	use rand::{rngs::StdRng, SeedableRng};

	use super::*;
	use crate::polynomial::test_utils::decompose_index_to_hypercube_point;

	// Consistency Tests for each shift variant
	fn test_circular_left_shift_consistency_help<
		F: TowerField,
		P: PackedFieldIndexable<Scalar = F>,
	>(
		block_size: usize,
		right_shift_offset: usize,
	) {
		let mut rng = StdRng::seed_from_u64(0);
		let backend = make_portable_backend();
		let r = repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();
		let eval_point = &repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();

		// Get Multivariate Poly version
		let shift_variant = ShiftVariant::CircularLeft;
		let shift_r_mvp =
			ShiftIndPartialEval::new(block_size, right_shift_offset, shift_variant, r).unwrap();
		let eval_mvp = shift_r_mvp.evaluate(eval_point).unwrap();

		// Get MultilinearExtension version
		let shift_r_mle = shift_r_mvp.multilinear_extension::<P>().unwrap();
		let multilin_query = backend.multilinear_query::<P>(eval_point).unwrap();
		let eval_mle = shift_r_mle.evaluate(&multilin_query).unwrap();

		// Assert equality
		assert_eq!(eval_mle, eval_mvp);
	}

	fn test_logical_left_shift_consistency_help<
		F: TowerField,
		P: PackedFieldIndexable<Scalar = F>,
	>(
		block_size: usize,
		right_shift_offset: usize,
	) {
		let mut rng = StdRng::seed_from_u64(0);
		let backend = make_portable_backend();
		let r = repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();
		let eval_point = &repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();

		// Get Multivariate Poly version
		let shift_variant = ShiftVariant::LogicalLeft;
		let shift_r_mvp =
			ShiftIndPartialEval::new(block_size, right_shift_offset, shift_variant, r).unwrap();
		let eval_mvp = shift_r_mvp.evaluate(eval_point).unwrap();

		// Get MultilinearExtension version
		let shift_r_mle = shift_r_mvp.multilinear_extension::<P>().unwrap();
		let multilin_query = backend.multilinear_query::<P>(eval_point).unwrap();
		let eval_mle = shift_r_mle.evaluate(&multilin_query).unwrap();

		// Assert equality
		assert_eq!(eval_mle, eval_mvp);
	}

	fn test_logical_right_shift_consistency_help<
		F: TowerField,
		P: PackedFieldIndexable<Scalar = F>,
	>(
		block_size: usize,
		left_shift_offset: usize,
	) {
		let mut rng = StdRng::seed_from_u64(0);
		let backend = make_portable_backend();
		let r = repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();
		let eval_point = &repeat_with(|| F::random(&mut rng))
			.take(block_size)
			.collect::<Vec<_>>();

		// Get Multivariate Poly version
		let shift_variant = ShiftVariant::LogicalRight;
		let shift_r_mvp =
			ShiftIndPartialEval::new(block_size, left_shift_offset, shift_variant, r).unwrap();
		let eval_mvp = shift_r_mvp.evaluate(eval_point).unwrap();

		// Get MultilinearExtension version
		let shift_r_mle = shift_r_mvp.multilinear_extension::<P>().unwrap();
		let multilin_query = backend.multilinear_query::<P>(eval_point).unwrap();
		let eval_mle = shift_r_mle.evaluate(&multilin_query).unwrap();

		// Assert equality
		assert_eq!(eval_mle, eval_mvp);
	}

	#[test]
	fn test_circular_left_shift_consistency_schwartz_zippel() {
		for block_size in 2..=10 {
			for right_shift_offset in [1, 2, 3, (1 << block_size) - 1, (1 << block_size) / 2] {
				test_circular_left_shift_consistency_help::<_, PackedBinaryField4x32b>(
					block_size,
					right_shift_offset,
				);
			}
		}
	}

	#[test]
	fn test_logical_left_shift_consistency_schwartz_zippel() {
		for block_size in 2..=10 {
			for right_shift_offset in [1, 2, 3, (1 << block_size) - 1, (1 << block_size) / 2] {
				test_logical_left_shift_consistency_help::<_, PackedBinaryField4x32b>(
					block_size,
					right_shift_offset,
				);
			}
		}
	}

	#[test]
	fn test_logical_right_shift_consistency_schwartz_zippel() {
		for block_size in 2..=10 {
			for left_shift_offset in [1, 2, 3, (1 << block_size) - 1, (1 << block_size) / 2] {
				test_logical_right_shift_consistency_help::<_, PackedBinaryField4x32b>(
					block_size,
					left_shift_offset,
				);
			}
		}
	}

	// Functionality Tests for each shift variant
	fn test_circular_left_shift_functionality_help<F: TowerField>(
		block_size: usize,
		right_shift_offset: usize,
	) {
		let shift_variant = ShiftVariant::CircularLeft;
		(0..(1 << block_size)).for_each(|i| {
			let r = decompose_index_to_hypercube_point::<F>(block_size, i);
			let shift_r_mvp =
				ShiftIndPartialEval::new(block_size, right_shift_offset, shift_variant, r).unwrap();
			(0..(1 << block_size)).for_each(|j| {
				let x = decompose_index_to_hypercube_point::<F>(block_size, j);
				let eval_mvp = shift_r_mvp.evaluate(&x).unwrap();
				if (j + right_shift_offset) % (1 << block_size) == i {
					assert_eq!(eval_mvp, F::ONE);
				} else {
					assert_eq!(eval_mvp, F::ZERO);
				}
			});
		});
	}
	fn test_logical_left_shift_functionality_help<F: TowerField>(
		block_size: usize,
		right_shift_offset: usize,
	) {
		let shift_variant = ShiftVariant::LogicalLeft;
		(0..(1 << block_size)).for_each(|i| {
			let r = decompose_index_to_hypercube_point::<F>(block_size, i);
			let shift_r_mvp =
				ShiftIndPartialEval::new(block_size, right_shift_offset, shift_variant, r).unwrap();
			(0..(1 << block_size)).for_each(|j| {
				let x = decompose_index_to_hypercube_point::<F>(block_size, j);
				let eval_mvp = shift_r_mvp.evaluate(&x).unwrap();
				if j + right_shift_offset == i {
					assert_eq!(eval_mvp, F::ONE);
				} else {
					assert_eq!(eval_mvp, F::ZERO);
				}
			});
		});
	}

	fn test_logical_right_shift_functionality_help<F: TowerField>(
		block_size: usize,
		left_shift_offset: usize,
	) {
		let shift_variant = ShiftVariant::LogicalRight;
		(0..(1 << block_size)).for_each(|i| {
			let r = decompose_index_to_hypercube_point::<F>(block_size, i);
			let shift_r_mvp =
				ShiftIndPartialEval::new(block_size, left_shift_offset, shift_variant, r).unwrap();
			(0..(1 << block_size)).for_each(|j| {
				let x = decompose_index_to_hypercube_point::<F>(block_size, j);
				let eval_mvp = shift_r_mvp.evaluate(&x).unwrap();
				if j >= left_shift_offset && j - left_shift_offset == i {
					assert_eq!(eval_mvp, F::ONE);
				} else {
					assert_eq!(eval_mvp, F::ZERO);
				}
			});
		});
	}

	#[test]
	fn test_circular_left_shift_functionality() {
		for block_size in 3..5 {
			for right_shift_offset in [
				1,
				3,
				(1 << block_size) - 1,
				(1 << block_size) - 2,
				(1 << (block_size - 1)),
			] {
				test_circular_left_shift_functionality_help::<BinaryField32b>(
					block_size,
					right_shift_offset,
				);
			}
		}
	}
	#[test]
	fn test_logical_left_shift_functionality() {
		for block_size in 3..5 {
			for right_shift_offset in [
				1,
				3,
				(1 << block_size) - 1,
				(1 << block_size) - 2,
				(1 << (block_size - 1)),
			] {
				test_logical_left_shift_functionality_help::<BinaryField32b>(
					block_size,
					right_shift_offset,
				);
			}
		}
	}
	#[test]
	fn test_logical_right_shift_functionality() {
		for block_size in 3..5 {
			for left_shift_offset in [
				1,
				3,
				(1 << block_size) - 1,
				(1 << block_size) - 2,
				(1 << (block_size - 1)),
			] {
				test_logical_right_shift_functionality_help::<BinaryField32b>(
					block_size,
					left_shift_offset,
				);
			}
		}
	}
}