binius_core/transparent/
step_down.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2024 Irreducible Inc.

use crate::polynomial::{Error, MultivariatePoly};
use binius_field::{BinaryField1b, Field, PackedField};
use binius_math::MultilinearExtension;
use binius_utils::bail;

/// Represents a multilinear F2-polynomial whose evaluations over the hypercube are 1 until a
/// specified index where they change to 0.
///
/// ```txt
///     (1 << n_vars)
/// <-------------------->
/// 1,1 .. 1,1,0,0, .. 0,0
///            ^
///            index of first 0
/// ```
///
/// This is useful for making constraints that are not enforced at the last rows of the trace
#[derive(Debug, Clone)]
pub struct StepDown {
	n_vars: usize,
	index: usize,
}

impl StepDown {
	pub fn new(n_vars: usize, index: usize) -> Result<Self, Error> {
		if index < 1 || index >= (1 << n_vars) {
			bail!(Error::ArgumentRangeError {
				arg: "index".into(),
				range: 1..(1 << n_vars),
			})
		} else {
			Ok(Self { n_vars, index })
		}
	}

	pub fn multilinear_extension<P: PackedField<Scalar = BinaryField1b>>(
		&self,
	) -> Result<MultilinearExtension<P>, Error> {
		if self.n_vars < P::LOG_WIDTH {
			bail!(Error::PackedFieldNotFilled {
				length: 1 << self.n_vars,
				packed_width: 1 << P::LOG_WIDTH,
			});
		}
		let log_packed_length = self.n_vars - P::LOG_WIDTH;
		let packed_index = self.index / P::WIDTH;
		let mut result = vec![P::zero(); 1 << log_packed_length];
		result[..packed_index].fill(P::one());
		for i in 0..self.index % P::WIDTH {
			result[packed_index].set(i, P::Scalar::ONE);
		}
		Ok(MultilinearExtension::from_values(result)?)
	}
}

impl<F: Field> MultivariatePoly<F> for StepDown {
	fn degree(&self) -> usize {
		self.n_vars
	}

	fn n_vars(&self) -> usize {
		self.n_vars
	}

	fn evaluate(&self, query: &[F]) -> Result<F, Error> {
		let n_vars = MultivariatePoly::<F>::n_vars(self);
		if query.len() != n_vars {
			bail!(Error::IncorrectQuerySize { expected: n_vars });
		}
		let mut k = self.index;

		// `result` is the evaluation of the complimentary "step-up" function that is 0 at indices 0..self.index and 1
		// at indices self.index..2^n. The "step-down" evaluation is then 1 - `result`.
		let mut result = F::ONE;
		for q in query {
			if k & 1 == 1 {
				// interpolate a line that is 0 at 0 and `result` at 1, at the point q
				result *= q;
			} else {
				// interpolate a line that is `result` at 0 and 1 at 1, and evaluate at q
				result = result * (F::ONE - q) + q;
			}
			k >>= 1;
		}

		Ok(F::ONE - result)
	}

	fn binary_tower_level(&self) -> usize {
		0
	}
}

#[cfg(test)]
mod tests {
	use super::StepDown;
	use crate::polynomial::test_utils::{hypercube_evals_from_oracle, packed_slice};
	use binius_field::{
		BinaryField1b, PackedBinaryField128x1b, PackedBinaryField256x1b, PackedField,
	};
	use binius_utils::felts;

	#[test]
	fn test_step_down_trace_without_packing_simple_cases() {
		assert_eq!(stepdown_evals::<BinaryField1b>(2, 1), felts!(BinaryField1b[1, 0, 0, 0]));
		assert_eq!(stepdown_evals::<BinaryField1b>(2, 2), felts!(BinaryField1b[1, 1, 0, 0]));
		assert_eq!(stepdown_evals::<BinaryField1b>(2, 3), felts!(BinaryField1b[1, 1, 1, 0]));
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 1),
			felts!(BinaryField1b[1, 0, 0, 0, 0, 0, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 2),
			felts!(BinaryField1b[1, 1, 0, 0, 0, 0, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 3),
			felts!(BinaryField1b[1, 1, 1, 0, 0, 0, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 4),
			felts!(BinaryField1b[1, 1, 1, 1, 0, 0, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 5),
			felts!(BinaryField1b[1, 1, 1, 1, 1, 0, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 6),
			felts!(BinaryField1b[1, 1, 1, 1, 1, 1, 0, 0])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(3, 7),
			felts!(BinaryField1b[1, 1, 1, 1, 1, 1, 1, 0])
		);
	}

	#[test]
	fn test_step_down_trace_without_packing() {
		assert_eq!(
			stepdown_evals::<BinaryField1b>(9, 314),
			packed_slice::<BinaryField1b>(&[(0..314, 1), (314..512, 0)])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(10, 555),
			packed_slice::<BinaryField1b>(&[(0..555, 1), (555..1024, 0)])
		);
		assert_eq!(
			stepdown_evals::<BinaryField1b>(11, 1),
			packed_slice::<BinaryField1b>(&[(0..1, 1), (1..2048, 0)])
		);
	}

	#[test]
	fn test_step_down_trace_with_packing_128() {
		assert_eq!(
			stepdown_evals::<PackedBinaryField128x1b>(9, 314),
			packed_slice::<PackedBinaryField128x1b>(&[(0..314, 1), (314..512, 0)])
		);
		assert_eq!(
			stepdown_evals::<PackedBinaryField128x1b>(10, 555),
			packed_slice::<PackedBinaryField128x1b>(&[(0..555, 1), (555..1024, 0)])
		);
		assert_eq!(
			stepdown_evals::<PackedBinaryField128x1b>(11, 1),
			packed_slice::<PackedBinaryField128x1b>(&[(0..1, 1), (1..2048, 0)])
		);
	}

	#[test]
	fn test_step_down_trace_with_packing_256() {
		assert_eq!(
			stepdown_evals::<PackedBinaryField256x1b>(9, 314),
			packed_slice::<PackedBinaryField256x1b>(&[(0..314, 1), (314..512, 0)])
		);
		assert_eq!(
			stepdown_evals::<PackedBinaryField256x1b>(10, 555),
			packed_slice::<PackedBinaryField256x1b>(&[(0..555, 1), (555..1024, 0)])
		);
		assert_eq!(
			stepdown_evals::<PackedBinaryField256x1b>(11, 1),
			packed_slice::<PackedBinaryField256x1b>(&[(0..1, 1), (1..2048, 0)])
		);
	}

	#[test]
	fn test_consistency_between_multilinear_extension_and_multilinear_poly_oracle() {
		for n_vars in 1..5 {
			for index in 1..(1 << n_vars) {
				let step_down = StepDown::new(n_vars, index).unwrap();
				assert_eq!(
					hypercube_evals_from_oracle::<BinaryField1b>(&step_down),
					step_down
						.multilinear_extension::<BinaryField1b>()
						.unwrap()
						.evals()
				);
			}
		}
	}

	fn stepdown_evals<P>(n_vars: usize, index: usize) -> Vec<P>
	where
		P: PackedField<Scalar = BinaryField1b>,
	{
		StepDown::new(n_vars, index)
			.unwrap()
			.multilinear_extension::<P>()
			.unwrap()
			.evals()
			.to_vec()
	}
}