binius_field/arch/portable/
packed_arithmetic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
// Copyright 2024 Irreducible Inc.

use crate::{
	arch::PackedStrategy,
	arithmetic_traits::{
		MulAlpha, TaggedInvertOrZero, TaggedMul, TaggedMulAlpha, TaggedPackedTransformationFactory,
		TaggedSquare,
	},
	binary_field::{BinaryField, TowerExtensionField},
	linear_transformation::{FieldLinearTransformation, Transformation},
	packed::PackedBinaryField,
	underlier::{UnderlierType, UnderlierWithBitOps, WithUnderlier},
	PackedExtension, PackedField, TowerField,
};
use std::ops::Deref;

pub trait UnderlierWithBitConstants: UnderlierWithBitOps
where
	Self: 'static,
{
	const INTERLEAVE_EVEN_MASK: &'static [Self];
	const INTERLEAVE_ODD_MASK: &'static [Self];

	/// Interleave with the given bit size
	fn interleave(self, other: Self, log_block_len: usize) -> (Self, Self) {
		// There are 2^7 = 128 bits in a u128
		assert!(log_block_len < Self::INTERLEAVE_EVEN_MASK.len());

		let block_len = 1 << log_block_len;

		// See Hacker's Delight, Section 7-3.
		// https://dl.acm.org/doi/10.5555/2462741
		let t = ((self >> block_len) ^ other) & Self::INTERLEAVE_EVEN_MASK[log_block_len];
		let c = self ^ t << block_len;
		let d = other ^ t;

		(c, d)
	}
}

/// Abstraction for a packed tower field of height greater than 0.
///
/// Helper trait
pub(crate) trait PackedTowerField: PackedField + WithUnderlier {
	/// A scalar of a lower height
	type DirectSubfield: TowerField;
	/// Packed type with the same underlier with a lower height
	type PackedDirectSubfield: PackedField<Scalar = Self::DirectSubfield>
		+ WithUnderlier<Underlier = Self::Underlier>;

	/// Reinterpret value as a packed field over a lower height
	fn as_packed_subfield(self) -> Self::PackedDirectSubfield;

	/// Reinterpret packed subfield as a current type
	fn from_packed_subfield(value: Self::PackedDirectSubfield) -> Self;
}

impl<F, P, U: UnderlierType> PackedTowerField for P
where
	F: TowerExtensionField,
	P: PackedField<Scalar = F> + PackedExtension<F::DirectSubfield> + WithUnderlier<Underlier = U>,
	P::PackedSubfield: WithUnderlier<Underlier = U>,
{
	type DirectSubfield = F::DirectSubfield;
	type PackedDirectSubfield = <Self as PackedExtension<F::DirectSubfield>>::PackedSubfield;

	#[inline]
	fn as_packed_subfield(self) -> Self::PackedDirectSubfield {
		P::cast_base(self)
	}

	#[inline]
	fn from_packed_subfield(value: Self::PackedDirectSubfield) -> Self {
		P::cast_ext(value)
	}
}

/// Compile-time known constants needed for packed multiply implementation.
pub(crate) trait TowerConstants<U> {
	/// Alpha values in odd positions, zeroes in even.
	const ALPHAS_ODD: U;
}

macro_rules! impl_tower_constants {
	($tower_field:ty, $underlier:ty, $value:tt) => {
		impl $crate::arch::portable::packed_arithmetic::TowerConstants<$underlier>
			for $tower_field
		{
			const ALPHAS_ODD: $underlier = $value;
		}
	};
}

pub(crate) use impl_tower_constants;

impl<PT> TaggedMul<PackedStrategy> for PT
where
	PT: PackedTowerField,
	PT::Underlier: UnderlierWithBitConstants,
	PT::DirectSubfield: TowerConstants<PT::Underlier>,
{
	/// Optimized packed field multiplication algorithm
	#[inline]
	fn mul(self, b: Self) -> Self {
		let a = self;

		// a and b can be interpreted as packed subfield elements:
		// a = <a_lo_0, a_hi_0, a_lo_1, a_hi_1, ...>
		// b = <b_lo_0, b_hi_0, b_lo_1, b_hi_1, ...>//
		// ab is the product of a * b as packed subfield elements
		// ab = <a_lo_0 * b_lo_0, a_hi_0 * b_hi_0, a_lo_1 * b_lo_1, a_hi_1 * b_hi_1, ...>
		let repacked_a = a.as_packed_subfield();
		let repacked_b = b.as_packed_subfield();
		let z0_even_z2_odd = repacked_a * repacked_b;

		// lo = <a_lo_0, b_lo_0, a_lo_1, b_lo_1, ...>
		// hi = <a_hi_0, b_hi_0, a_hi_1, b_hi_1, ...>
		let (lo, hi) =
			interleave::<PT::Underlier, PT::DirectSubfield>(a.to_underlier(), b.to_underlier());

		// <a_lo_0 + a_hi_0, b_lo_0 + b_hi_0, a_lo_1 + a_hi_1, b_lo_1 + b_hi_1, ...>
		let lo_plus_hi_a_even_b_odd = lo ^ hi;

		let odd_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_ODD_MASK
			[PT::DirectSubfield::TOWER_LEVEL];

		let alphas = PT::DirectSubfield::ALPHAS_ODD;

		// <α, z2_0, α, z2_1, ...>
		let alpha_even_z2_odd = alphas ^ (z0_even_z2_odd.to_underlier() & odd_mask);

		// a_lo_plus_hi_even_z2_odd    = <a_lo_0 + a_hi_0, z2_0, a_lo_1 + a_hi_1, z2_1, ...>
		// b_lo_plus_hi_even_alpha_odd = <b_lo_0 + b_hi_0,    α, a_lo_1 + a_hi_1,   αz, ...>
		let (a_lo_plus_hi_even_alpha_odd, b_lo_plus_hi_even_z2_odd) =
			interleave::<PT::Underlier, PT::DirectSubfield>(
				lo_plus_hi_a_even_b_odd,
				alpha_even_z2_odd,
			);

		// <z1_0 + z0_0 + z2_0, z2a_0, z1_1 + z0_1 + z2_1, z2a_1, ...>
		let z1_plus_z0_plus_z2_even_z2a_odd =
			PT::PackedDirectSubfield::from_underlier(a_lo_plus_hi_even_alpha_odd)
				* PT::PackedDirectSubfield::from_underlier(b_lo_plus_hi_even_z2_odd);

		// <0, z1_0 + z2a_0 + z0_0 + z2_0, 0, z1_1 + z2a_1 + z0_1 + z2_1, ...>
		let zero_even_z1_plus_z2a_plus_z0_plus_z2_odd = (z1_plus_z0_plus_z2_even_z2a_odd
			.to_underlier()
			^ (z1_plus_z0_plus_z2_even_z2a_odd.to_underlier() << PT::DirectSubfield::N_BITS))
			& odd_mask;

		// <z0_0 + z2_0, z0_0 + z2_0, z0_1 + z2_1, z0_1 + z2_1, ...>
		let z0_plus_z2_dup =
			xor_adjacent::<PT::Underlier, PT::DirectSubfield>(z0_even_z2_odd.to_underlier());

		// <z0_0 + z2_0, z1_0 + z2a_0, z0_1 + z2_1, z1_1 + z2a_1, ...>
		Self::from_underlier(z0_plus_z2_dup ^ zero_even_z1_plus_z2a_plus_z0_plus_z2_odd)
	}
}

/// Generate the mask with alphas in the odd packed element positions and zeros in even
macro_rules! alphas {
	($underlier:ty, $tower_level:literal) => {{
		let mut alphas: $underlier = if $tower_level == 0 {
			1
		} else {
			1 << (1 << ($tower_level - 1))
		};

		let log_width = <$underlier as $crate::underlier::UnderlierType>::LOG_BITS - $tower_level;
		let mut i = 1;
		while i < log_width {
			alphas |= alphas << (1 << ($tower_level + i));
			i += 1;
		}

		alphas
	}};
}

pub(crate) use alphas;

/// Generate the mask with ones in the odd packed element positions and zeros in even
macro_rules! interleave_mask_even {
	($underlier:ty, $tower_level:literal) => {{
		let scalar_bits = 1 << $tower_level;

		let mut mask: $underlier = (1 << scalar_bits) - 1;
		let log_width = <$underlier>::LOG_BITS - $tower_level;
		let mut i = 1;
		while i < log_width {
			mask |= mask << (scalar_bits << i);
			i += 1;
		}

		mask
	}};
}

pub(crate) use interleave_mask_even;

/// Generate the mask with ones in the even packed element positions and zeros in odd
macro_rules! interleave_mask_odd {
	($underlier:ty, $tower_level:literal) => {
		interleave_mask_even!($underlier, $tower_level) << (1 << $tower_level)
	};
}

pub(crate) use interleave_mask_odd;

/// View the inputs as vectors of packed binary tower elements and transpose as 2x2 square matrices.
/// Given vectors <a_0, a_1, a_2, a_3, ...> and <b_0, b_1, b_2, b_3, ...>, returns a tuple with
/// <a0, b0, a2, b2, ...> and <a1, b1, a3, b3>.
fn interleave<U: UnderlierWithBitConstants, F: TowerField>(a: U, b: U) -> (U, U) {
	let mask = U::INTERLEAVE_EVEN_MASK[F::TOWER_LEVEL];

	let block_len = F::N_BITS;
	let t = ((a >> block_len) ^ b) & mask;
	let c = a ^ (t << block_len);
	let d = b ^ t;

	(c, d)
}

/// View the input as a vector of packed binary tower elements and add the adjacent ones.
/// Given a vector <a_0, a_1, a_2, a_3, ...>, returns <a0 + a1, a0 + a1, a2 + a3, a2 + a3, ...>.
fn xor_adjacent<U: UnderlierWithBitConstants, F: TowerField>(a: U) -> U {
	let mask = U::INTERLEAVE_EVEN_MASK[F::TOWER_LEVEL];

	let block_len = F::N_BITS;
	let t = ((a >> block_len) ^ a) & mask;

	t ^ (t << block_len)
}

impl<PT> TaggedMulAlpha<PackedStrategy> for PT
where
	PT: PackedTowerField,
	PT::PackedDirectSubfield: MulAlpha,
	PT::Underlier: UnderlierWithBitConstants,
{
	#[inline]
	fn mul_alpha(self) -> Self {
		let block_len = PT::DirectSubfield::N_BITS;
		let even_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_EVEN_MASK
			[PT::DirectSubfield::TOWER_LEVEL];
		let odd_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_ODD_MASK
			[PT::DirectSubfield::TOWER_LEVEL];

		let a = self.to_underlier();
		let a0 = a & even_mask;
		let a1 = a & odd_mask;
		let z1 = PT::PackedDirectSubfield::from_underlier(a1)
			.mul_alpha()
			.to_underlier();

		Self::from_underlier((a1 >> block_len) | ((a0 << block_len) ^ z1))
	}
}

impl<PT> TaggedSquare<PackedStrategy> for PT
where
	PT: PackedTowerField,
	PT::PackedDirectSubfield: MulAlpha,
	PT::Underlier: UnderlierWithBitConstants,
{
	#[inline]
	fn square(self) -> Self {
		let block_len = PT::DirectSubfield::N_BITS;
		let even_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_EVEN_MASK
			[PT::DirectSubfield::TOWER_LEVEL];
		let odd_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_ODD_MASK
			[PT::DirectSubfield::TOWER_LEVEL];

		let z_02 = PackedField::square(self.as_packed_subfield());
		let z_2a = z_02.mul_alpha().to_underlier() & odd_mask;

		let z_0_xor_z_2 = (z_02.to_underlier() ^ (z_02.to_underlier() >> block_len)) & even_mask;

		Self::from_underlier(z_0_xor_z_2 | z_2a)
	}
}

impl<PT> TaggedInvertOrZero<PackedStrategy> for PT
where
	PT: PackedTowerField,
	PT::PackedDirectSubfield: MulAlpha,
	PT::Underlier: UnderlierWithBitConstants,
{
	#[inline]
	fn invert_or_zero(self) -> Self {
		let block_len = PT::DirectSubfield::N_BITS;
		let even_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_EVEN_MASK
			[PT::DirectSubfield::TOWER_LEVEL];
		let odd_mask = <PT::Underlier as UnderlierWithBitConstants>::INTERLEAVE_ODD_MASK
			[PT::DirectSubfield::TOWER_LEVEL];

		// has meaningful values in even positions
		let a_1_even = PT::PackedDirectSubfield::from_underlier(self.to_underlier() >> block_len);
		let intermediate = self.as_packed_subfield() + a_1_even.mul_alpha();
		let delta = self.as_packed_subfield() * intermediate
			+ <PT::PackedDirectSubfield as PackedField>::square(a_1_even);
		let delta_inv = PackedField::invert_or_zero(delta);

		// set values from even positions to odd as well
		let mut delta_inv_delta_inv = delta_inv.to_underlier() & even_mask;
		delta_inv_delta_inv |= delta_inv_delta_inv << block_len;

		let intermediate_a1 =
			(self.to_underlier() & odd_mask) | (intermediate.to_underlier() & even_mask);
		let result = PT::PackedDirectSubfield::from_underlier(delta_inv_delta_inv)
			* PT::PackedDirectSubfield::from_underlier(intermediate_a1);
		Self::from_underlier(result.to_underlier())
	}
}

/// Packed transformation implementation.
/// Stores bases in a form of:
/// [
///     [<base vec 1> ... <base vec 1>],
///     ...
///     [<base vec N> ... <base vec N>]
/// ]
/// Transformation complexity is `N*log(N)` where `N` is `OP::Scalar::DEGREE`.
pub struct PackedTransformation<OP> {
	bases: Vec<OP>,
}

impl<OP> PackedTransformation<OP>
where
	OP: PackedBinaryField,
{
	pub fn new<Data: Deref<Target = [OP::Scalar]>>(
		transformation: FieldLinearTransformation<OP::Scalar, Data>,
	) -> Self {
		Self {
			bases: transformation
				.bases()
				.iter()
				.map(|base| OP::broadcast(*base))
				.collect(),
		}
	}
}

/// Broadcast lowest field for each element, e.g. [<0001><0000>] -> [<1111><0000>]
fn broadcast_lowest_bit<U: UnderlierWithBitOps>(mut data: U, log_packed_bits: usize) -> U {
	for i in 0..log_packed_bits {
		data |= data << (1 << i)
	}

	data
}

impl<U, IP, OP, IF, OF> Transformation<IP, OP> for PackedTransformation<OP>
where
	IP: PackedField<Scalar = IF> + WithUnderlier<Underlier = U>,
	OP: PackedField<Scalar = OF> + WithUnderlier<Underlier = U>,
	IF: BinaryField,
	OF: BinaryField,
	U: UnderlierWithBitOps,
{
	fn transform(&self, input: &IP) -> OP {
		let mut result = OP::zero();
		let ones = OP::one().to_underlier();
		let mut input = input.to_underlier();

		for base in self.bases.iter() {
			let base_component = input & ones;
			// contains ones at positions which correspond to non-zero components
			let mask = broadcast_lowest_bit(base_component, OF::LOG_DEGREE);
			result += OP::from_underlier(mask & base.to_underlier());
			input = input >> 1;
		}

		result
	}
}

impl<IP, OP> TaggedPackedTransformationFactory<PackedStrategy, OP> for IP
where
	IP: PackedBinaryField + WithUnderlier<Underlier: UnderlierWithBitOps>,
	OP: PackedBinaryField + WithUnderlier<Underlier = IP::Underlier>,
{
	type PackedTransformation<Data: Deref<Target = [OP::Scalar]>> = PackedTransformation<OP>;

	fn make_packed_transformation<Data: Deref<Target = [OP::Scalar]>>(
		transformation: FieldLinearTransformation<OP::Scalar, Data>,
	) -> Self::PackedTransformation<Data> {
		PackedTransformation::new(transformation)
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	use rand::thread_rng;
	use std::fmt::Debug;

	use crate::{
		arch::portable::packed_128::{
			PackedBinaryField16x8b, PackedBinaryField1x128b, PackedBinaryField2x64b,
			PackedBinaryField32x4b, PackedBinaryField4x32b, PackedBinaryField64x2b,
			PackedBinaryField8x16b,
		},
		test_utils::{
			define_invert_tests, define_mul_alpha_tests, define_multiply_tests,
			define_square_tests, define_transformation_tests,
		},
	};

	use crate::{
		BinaryField16b, BinaryField1b, BinaryField2b, BinaryField32b, BinaryField4b,
		BinaryField64b, BinaryField8b,
	};

	const NUM_TESTS: u64 = 100;

	fn check_interleave<F: TowerField>(a: u128, b: u128, c: u128, d: u128) {
		assert_eq!(interleave::<u128, F>(a, b), (c, d));
		assert_eq!(interleave::<u128, F>(c, d), (a, b));
	}

	#[test]
	fn test_interleave() {
		check_interleave::<BinaryField1b>(
			0x0000000000000000FFFFFFFFFFFFFFFF,
			0xFFFFFFFFFFFFFFFF0000000000000000,
			0xAAAAAAAAAAAAAAAA5555555555555555,
			0xAAAAAAAAAAAAAAAA5555555555555555,
		);

		check_interleave::<BinaryField2b>(
			0x0000000000000000FFFFFFFFFFFFFFFF,
			0xFFFFFFFFFFFFFFFF0000000000000000,
			0xCCCCCCCCCCCCCCCC3333333333333333,
			0xCCCCCCCCCCCCCCCC3333333333333333,
		);

		check_interleave::<BinaryField4b>(
			0x0000000000000000FFFFFFFFFFFFFFFF,
			0xFFFFFFFFFFFFFFFF0000000000000000,
			0xF0F0F0F0F0F0F0F00F0F0F0F0F0F0F0F,
			0xF0F0F0F0F0F0F0F00F0F0F0F0F0F0F0F,
		);

		check_interleave::<BinaryField8b>(
			0x0F0E0D0C0B0A09080706050403020100,
			0x1F1E1D1C1B1A19181716151413121110,
			0x1E0E1C0C1A0A18081606140412021000,
			0x1F0F1D0D1B0B19091707150513031101,
		);

		check_interleave::<BinaryField16b>(
			0x0F0E0D0C0B0A09080706050403020100,
			0x1F1E1D1C1B1A19181716151413121110,
			0x1D1C0D0C191809081514050411100100,
			0x1F1E0F0E1B1A0B0A1716070613120302,
		);

		check_interleave::<BinaryField32b>(
			0x0F0E0D0C0B0A09080706050403020100,
			0x1F1E1D1C1B1A19181716151413121110,
			0x1B1A19180B0A09081312111003020100,
			0x1F1E1D1C0F0E0D0C1716151407060504,
		);

		check_interleave::<BinaryField64b>(
			0x0F0E0D0C0B0A09080706050403020100,
			0x1F1E1D1C1B1A19181716151413121110,
			0x17161514131211100706050403020100,
			0x1F1E1D1C1B1A19180F0E0D0C0B0A0908,
		);
	}

	fn test_packed_multiply_alpha<P>()
	where
		P: PackedField + MulAlpha + Debug,
		P::Scalar: MulAlpha,
	{
		let mut rng = thread_rng();

		for _ in 0..NUM_TESTS {
			let a = P::random(&mut rng);

			let result = a.mul_alpha();
			for i in 0..P::WIDTH {
				assert_eq!(result.get(i), MulAlpha::mul_alpha(a.get(i)));
			}
		}
	}

	#[test]
	fn test_multiply_alpha() {
		test_packed_multiply_alpha::<PackedBinaryField64x2b>();
		test_packed_multiply_alpha::<PackedBinaryField32x4b>();
		test_packed_multiply_alpha::<PackedBinaryField16x8b>();
		test_packed_multiply_alpha::<PackedBinaryField8x16b>();
		test_packed_multiply_alpha::<PackedBinaryField4x32b>();
		test_packed_multiply_alpha::<PackedBinaryField2x64b>();
		test_packed_multiply_alpha::<PackedBinaryField1x128b>();
	}

	define_multiply_tests!(TaggedMul<PackedStrategy>::mul, TaggedMul<PackedStrategy>);

	define_square_tests!(TaggedSquare<PackedStrategy>::square, TaggedSquare<PackedStrategy>);

	define_invert_tests!(
		TaggedInvertOrZero<PackedStrategy>::invert_or_zero,
		TaggedInvertOrZero<PackedStrategy>
	);

	define_mul_alpha_tests!(
		TaggedMulAlpha<PackedStrategy>::mul_alpha,
		TaggedMulAlpha<PackedStrategy>
	);

	#[allow(unused)]
	trait SelfPackedTransformationFactory:
		TaggedPackedTransformationFactory<PackedStrategy, Self>
	{
	}

	impl<T: TaggedPackedTransformationFactory<PackedStrategy, Self>> SelfPackedTransformationFactory
		for T
	{
	}

	define_transformation_tests!(SelfPackedTransformationFactory);
}