binius_field/arch/x86_64/simd/
simd_arithmetic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright 2024-2025 Irreducible Inc.

use std::{any::TypeId, arch::x86_64::*, ops::Deref};

use crate::{
	aes_field::AESTowerField8b,
	arch::{
		portable::{
			packed::PackedPrimitiveType, packed_arithmetic::PackedTowerField,
			reuse_multiply_arithmetic::Alpha,
		},
		SimdStrategy,
	},
	arithmetic_traits::{
		MulAlpha, TaggedInvertOrZero, TaggedMul, TaggedMulAlpha, TaggedPackedTransformationFactory,
		TaggedSquare,
	},
	linear_transformation::{FieldLinearTransformation, Transformation},
	packed::PackedBinaryField,
	underlier::{UnderlierType, UnderlierWithBitOps, WithUnderlier},
	BinaryField, BinaryField8b, PackedField, TowerField,
};

pub trait TowerSimdType: Sized + Copy + UnderlierWithBitOps {
	/// Blend odd and even elements
	fn blend_odd_even<Scalar: BinaryField>(a: Self, b: Self) -> Self;
	/// Set alpha to even elements
	fn set_alpha_even<Scalar: BinaryField>(self) -> Self;
	/// Apply `mask` to `a` (set zeros at positions where high bit of the `mask` is 0).
	fn apply_mask<Scalar: BinaryField>(mask: Self, a: Self) -> Self;

	/// Bit xor operation
	fn xor(a: Self, b: Self) -> Self;

	/// Shuffle 8-bit elements within 128-bit lanes
	fn shuffle_epi8(a: Self, b: Self) -> Self;

	/// Byte shifts within 128-bit lanes
	fn bslli_epi128<const IMM8: i32>(self) -> Self;
	fn bsrli_epi128<const IMM8: i32>(self) -> Self;

	/// Initialize value with a single element
	fn set1_epi128(val: __m128i) -> Self;
	fn set_epi_64(val: i64) -> Self;

	#[inline(always)]
	fn dup_shuffle<Scalar: BinaryField>() -> Self {
		let shuffle_mask_128 = unsafe {
			match Scalar::N_BITS.ilog2() {
				3 => _mm_set_epi8(14, 14, 12, 12, 10, 10, 8, 8, 6, 6, 4, 4, 2, 2, 0, 0),
				4 => _mm_set_epi8(13, 12, 13, 12, 9, 8, 9, 8, 5, 4, 5, 4, 1, 0, 1, 0),
				5 => _mm_set_epi8(11, 10, 9, 8, 11, 10, 9, 8, 3, 2, 1, 0, 3, 2, 1, 0),
				6 => _mm_set_epi8(7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0),
				_ => panic!("unsupported bit count"),
			}
		};

		Self::set1_epi128(shuffle_mask_128)
	}

	#[inline(always)]
	fn flip_shuffle<Scalar: BinaryField>() -> Self {
		let flip_mask_128 = unsafe {
			match Scalar::N_BITS.ilog2() {
				3 => _mm_set_epi8(14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1),
				4 => _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2),
				5 => _mm_set_epi8(11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4),
				6 => _mm_set_epi8(7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8),
				_ => panic!("unsupported bit count"),
			}
		};

		Self::set1_epi128(flip_mask_128)
	}

	/// Creates mask to propagate the highest bit form mask to other element bytes
	#[inline(always)]
	fn make_epi8_mask_shuffle<Scalar: BinaryField>() -> Self {
		let epi8_mask_128 = unsafe {
			match Scalar::N_BITS.ilog2() {
				4 => _mm_set_epi8(15, 15, 13, 13, 11, 11, 9, 9, 7, 7, 5, 5, 3, 3, 1, 1),
				5 => _mm_set_epi8(15, 15, 15, 15, 11, 11, 11, 11, 7, 7, 7, 7, 3, 3, 3, 3),
				6 => _mm_set_epi8(15, 15, 15, 15, 15, 15, 15, 15, 7, 7, 7, 7, 7, 7, 7, 7),
				7 => _mm_set1_epi8(15),
				_ => panic!("unsupported bit count"),
			}
		};

		Self::set1_epi128(epi8_mask_128)
	}

	#[inline(always)]
	fn alpha<Scalar: BinaryField>() -> Self {
		let alpha_128 = unsafe {
			match Scalar::N_BITS.ilog2() {
				3 => {
					// Compiler will optimize this if out for each instantiation
					let type_id = TypeId::of::<Scalar>();
					let value = if type_id == TypeId::of::<BinaryField8b>() {
						0x10
					} else if type_id == TypeId::of::<AESTowerField8b>() {
						0xd3u8 as i8
					} else {
						panic!("tower field not supported")
					};
					_mm_set1_epi8(value)
				}
				4 => _mm_set1_epi16(0x0100),
				5 => _mm_set1_epi32(0x00010000),
				6 => _mm_set1_epi64x(0x0000000100000000),
				_ => panic!("unsupported bit count"),
			}
		};

		Self::set1_epi128(alpha_128)
	}

	#[inline(always)]
	fn even_mask<Scalar: BinaryField>() -> Self {
		let mask_128 = unsafe {
			match Scalar::N_BITS.ilog2() {
				3 => _mm_set1_epi16(0x00FF),
				4 => _mm_set1_epi32(0x0000FFFF),
				5 => _mm_set1_epi64x(0x00000000FFFFFFFF),
				6 => _mm_set_epi64x(0, -1),
				_ => panic!("unsupported bit count"),
			}
		};

		Self::set1_epi128(mask_128)
	}
}

impl<U: UnderlierType + TowerSimdType, Scalar: TowerField> Alpha
	for PackedPrimitiveType<U, Scalar>
{
	#[inline(always)]
	fn alpha() -> Self {
		U::alpha::<Scalar>().into()
	}
}

#[inline(always)]
fn blend_odd_even<U, PT>(a: PT, b: PT) -> PT
where
	U: TowerSimdType,
	PT: PackedField<Scalar: TowerField> + WithUnderlier<Underlier = U>,
{
	PT::from_underlier(U::blend_odd_even::<PT::Scalar>(a.to_underlier(), b.to_underlier()))
}

#[inline(always)]
fn xor<U, PT>(a: PT, b: PT) -> PT
where
	U: TowerSimdType,
	PT: WithUnderlier<Underlier = U>,
{
	PT::from_underlier(U::xor(a.to_underlier(), b.to_underlier()))
}

#[inline(always)]
fn duplicate_odd<U, PT>(val: PT) -> PT
where
	U: TowerSimdType,
	PT: PackedField<Scalar: TowerField> + WithUnderlier<Underlier = U>,
{
	PT::from_underlier(U::shuffle_epi8(val.to_underlier(), U::dup_shuffle::<PT::Scalar>()))
}

#[inline(always)]
fn flip_even_odd<U, PT>(val: PT) -> PT
where
	U: TowerSimdType,
	PT: PackedField<Scalar: TowerField> + WithUnderlier<Underlier = U>,
{
	PT::from_underlier(U::shuffle_epi8(val.to_underlier(), U::flip_shuffle::<PT::Scalar>()))
}

impl<U, Scalar: TowerField> TaggedMul<SimdStrategy> for PackedPrimitiveType<U, Scalar>
where
	Self: PackedTowerField<Underlier = U>,
	U: TowerSimdType + UnderlierType,
{
	fn mul(self, rhs: Self) -> Self {
		// This fallback is needed to generically use SimdStrategy in benchmarks.
		if Scalar::TOWER_LEVEL <= 3 {
			return self * rhs;
		}

		let a = self.as_packed_subfield();
		let b = rhs.as_packed_subfield();

		// [a0_lo * b0_lo, a0_hi * b0_hi, a1_lo * b1_lo, a1_h1 * b1_hi, ...]
		let z0_even_z2_odd = a * b;

		// [a0_lo, b0_lo, a1_lo, b1_lo, ...]
		// [a0_hi, b0_hi, a1_hi, b1_hi, ...]
		let (lo, hi) = a.interleave(b, 0);
		// [a0_lo + a0_hi, b0_lo + b0_hi, a1_lo + a1_hi, b1lo + b1_hi, ...]
		let lo_plus_hi_a_even_b_odd = lo + hi;

		let alpha_even_z2_odd = <Self as PackedTowerField>::PackedDirectSubfield::from_underlier(
			z0_even_z2_odd
				.to_underlier()
				.set_alpha_even::<<Self as PackedTowerField>::DirectSubfield>(),
		);
		let (lhs, rhs) = lo_plus_hi_a_even_b_odd.interleave(alpha_even_z2_odd, 0);
		let z1_xor_z0z2_even_z2a_odd = lhs * rhs;

		let z1_xor_z0z2 = duplicate_odd(z1_xor_z0z2_even_z2a_odd);
		let zero_even_z1_xor_z2a_xor_z0z2_odd = xor(z1_xor_z0z2_even_z2a_odd, z1_xor_z0z2);

		let z2_even_z0_odd = flip_even_odd(z0_even_z2_odd);
		let z0z2 = xor(z0_even_z2_odd, z2_even_z0_odd);

		Self::from_packed_subfield(xor(zero_even_z1_xor_z2a_xor_z0z2_odd, z0z2))
	}
}

impl<U, Scalar: TowerField> TaggedMulAlpha<SimdStrategy> for PackedPrimitiveType<U, Scalar>
where
	Self: PackedTowerField<Underlier = U> + MulAlpha,
	<Self as PackedTowerField>::PackedDirectSubfield: MulAlpha,
	U: TowerSimdType + UnderlierType,
{
	#[inline]
	fn mul_alpha(self) -> Self {
		// This fallback is needed to generically use SimdStrategy in benchmarks.
		if Scalar::TOWER_LEVEL <= 3 {
			return MulAlpha::mul_alpha(self);
		}

		let a_0_a_1 = self.as_packed_subfield();
		let a_0_mul_alpha_a_1_mul_alpha = a_0_a_1.mul_alpha();

		let a_1_a_0 = flip_even_odd(self.as_packed_subfield());
		let a0_plus_a1_alpha = xor(a_0_mul_alpha_a_1_mul_alpha, a_1_a_0);

		Self::from_packed_subfield(blend_odd_even(a0_plus_a1_alpha, a_1_a_0))
	}
}

impl<U, Scalar: TowerField> TaggedSquare<SimdStrategy> for PackedPrimitiveType<U, Scalar>
where
	Self: PackedTowerField<Underlier = U>,
	<Self as PackedTowerField>::PackedDirectSubfield: MulAlpha,
	U: TowerSimdType + UnderlierType,
{
	fn square(self) -> Self {
		// This fallback is needed to generically use SimdStrategy in benchmarks.
		if Scalar::TOWER_LEVEL <= 3 {
			return PackedField::square(self);
		}

		let a_0_a_1 = self.as_packed_subfield();
		let a_0_sq_a_1_sq = PackedField::square(a_0_a_1);
		let a_1_sq_a_0_sq = flip_even_odd(a_0_sq_a_1_sq);
		let a_0_sq_plus_a_1_sq = a_0_sq_a_1_sq + a_1_sq_a_0_sq;
		let a_1_mul_alpha = a_0_sq_a_1_sq.mul_alpha();

		Self::from_packed_subfield(blend_odd_even(a_1_mul_alpha, a_0_sq_plus_a_1_sq))
	}
}

impl<U, Scalar: TowerField> TaggedInvertOrZero<SimdStrategy> for PackedPrimitiveType<U, Scalar>
where
	Self: PackedTowerField<Underlier = U>,
	<Self as PackedTowerField>::PackedDirectSubfield: MulAlpha,
	U: TowerSimdType + UnderlierType,
{
	fn invert_or_zero(self) -> Self {
		// This fallback is needed to generically use SimdStrategy in benchmarks.
		if Scalar::TOWER_LEVEL <= 3 {
			return PackedField::invert_or_zero(self);
		}

		let a_0_a_1 = self.as_packed_subfield();
		let a_1_a_0 = flip_even_odd(a_0_a_1);
		let a_1_mul_alpha = a_1_a_0.mul_alpha();
		let a_0_plus_a1_mul_alpha = xor(a_0_a_1, a_1_mul_alpha);
		let a_1_sq_a_0_sq = PackedField::square(a_1_a_0);
		let delta = xor(a_1_sq_a_0_sq, a_0_plus_a1_mul_alpha * a_0_a_1);
		let delta_inv = PackedField::invert_or_zero(delta);
		let delta_inv_delta_inv = duplicate_odd(delta_inv);
		let delta_multiplier = blend_odd_even(a_0_a_1, a_0_plus_a1_mul_alpha);

		Self::from_packed_subfield(delta_inv_delta_inv * delta_multiplier)
	}
}

/// SIMD packed field transformation.
/// The idea is similar to `PackedTransformation` but we use SIMD instructions
/// to multiply a component with zeros/ones by a basis vector.
pub struct SimdTransformation<OP> {
	bases: Vec<OP>,
	ones: OP,
}

#[allow(private_bounds)]
impl<OP> SimdTransformation<OP>
where
	OP: PackedBinaryField + WithUnderlier<Underlier: TowerSimdType + UnderlierWithBitOps>,
{
	pub fn new<Data: Deref<Target = [OP::Scalar]>>(
		transformation: FieldLinearTransformation<OP::Scalar, Data>,
	) -> Self {
		Self {
			bases: transformation
				.bases()
				.iter()
				.map(|base| OP::broadcast(*base))
				.collect(),
			// Set ones to the highest bit
			// This is the format that is used in SIMD masks
			ones: OP::one().mutate_underlier(|underlier| underlier << (OP::Scalar::N_BITS - 1)),
		}
	}
}

impl<U, IP, OP, IF, OF> Transformation<IP, OP> for SimdTransformation<OP>
where
	IP: PackedField<Scalar = IF> + WithUnderlier<Underlier = U>,
	OP: PackedField<Scalar = OF> + WithUnderlier<Underlier = U>,
	IF: BinaryField,
	OF: BinaryField,
	U: UnderlierWithBitOps + TowerSimdType,
{
	fn transform(&self, input: &IP) -> OP {
		let mut result = OP::zero();
		let ones = self.ones.to_underlier();
		let mut input = input.to_underlier();

		// Unlike `PackedTransformation`, we iterate from the highest bit to lowest one
		// keeping current component in the highest bit.
		for base in self.bases.iter().rev() {
			let bases_mask = input & ones;
			let component = U::apply_mask::<OP::Scalar>(bases_mask, base.to_underlier());
			result += OP::from_underlier(component);
			input = input << 1;
		}

		result
	}
}

impl<IP, OP> TaggedPackedTransformationFactory<SimdStrategy, OP> for IP
where
	IP: PackedBinaryField + WithUnderlier<Underlier: UnderlierWithBitOps>,
	OP: PackedBinaryField + WithUnderlier<Underlier = IP::Underlier>,
	IP::Underlier: TowerSimdType,
{
	type PackedTransformation<Data: Deref<Target = [<OP>::Scalar]>> = SimdTransformation<OP>;

	fn make_packed_transformation<Data: Deref<Target = [OP::Scalar]>>(
		transformation: FieldLinearTransformation<OP::Scalar, Data>,
	) -> Self::PackedTransformation<Data> {
		SimdTransformation::new(transformation)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::test_utils::{
		define_invert_tests, define_mul_alpha_tests, define_multiply_tests, define_square_tests,
		define_transformation_tests,
	};

	define_multiply_tests!(TaggedMul<SimdStrategy>::mul, TaggedMul<SimdStrategy>);

	define_square_tests!(TaggedSquare<SimdStrategy>::square, TaggedSquare<SimdStrategy>);

	define_invert_tests!(
		TaggedInvertOrZero<SimdStrategy>::invert_or_zero,
		TaggedInvertOrZero<SimdStrategy>
	);

	define_mul_alpha_tests!(TaggedMulAlpha<SimdStrategy>::mul_alpha, TaggedMulAlpha<SimdStrategy>);

	#[allow(unused)]
	trait SelfPackedTransformationFactory:
		TaggedPackedTransformationFactory<SimdStrategy, Self>
	{
	}

	impl<T: TaggedPackedTransformationFactory<SimdStrategy, Self>> SelfPackedTransformationFactory
		for T
	{
	}

	define_transformation_tests!(SelfPackedTransformationFactory);
}