binius_field/
transpose.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2023-2025 Irreducible Inc.

use binius_utils::checked_arithmetics::log2_strict_usize;

use super::{packed::PackedField, ExtensionField, PackedFieldIndexable, RepackedExtension};

/// Error thrown when a transpose operation fails.
#[derive(Clone, thiserror::Error, Debug)]
pub enum Error {
	#[error("the \"{param}\" argument's size is invalid: {msg}")]
	InvalidBufferSize { param: &'static str, msg: String },
	#[error("dimension n of square blocks must divide packing width")]
	SquareBlockDimensionMustDivideWidth,
	#[error("destination buffer must be castable to a packed extension field buffer")]
	UnalignedDestination,
}

/// Transpose square blocks of elements within packed field elements in place.
///
/// The input elements are interpreted as a rectangular matrix with height `n = 2^n` in row-major
/// order. This matrix is interpreted as a vector of square matrices of field elements, and each
/// square matrix is transposed in-place.
///
/// # Arguments
///
/// * `log_n`: The base-2 logarithm of the dimension of the n x n square matrix. Must be less than
///   or equal to the base-2 logarithm of the packing width.
/// * `elems`: The packed field elements, length is a power-of-two multiple of `1 << log_n`.
pub fn square_transpose<P: PackedField>(log_n: usize, elems: &mut [P]) -> Result<(), Error> {
	if P::LOG_WIDTH < log_n {
		return Err(Error::SquareBlockDimensionMustDivideWidth);
	}

	let size = elems.len();
	if !size.is_power_of_two() {
		return Err(Error::InvalidBufferSize {
			param: "elems",
			msg: "power of two size required".to_string(),
		});
	}
	let log_size = log2_strict_usize(size);
	if log_size < log_n {
		return Err(Error::InvalidBufferSize {
			param: "elems",
			msg: "must have length at least 2^log_n".to_string(),
		});
	}

	let log_w = log_size - log_n;

	// See Hacker's Delight, Section 7-3.
	// https://dl.acm.org/doi/10.5555/2462741
	for i in 0..log_n {
		for j in 0..1 << (log_n - i - 1) {
			for k in 0..1 << (log_w + i) {
				let idx0 = (j << (log_w + i + 1)) | k;
				let idx1 = idx0 | (1 << (log_w + i));

				let v0 = elems[idx0];
				let v1 = elems[idx1];
				let (v0, v1) = v0.interleave(v1, i);
				elems[idx0] = v0;
				elems[idx1] = v1;
			}
		}
	}

	Ok(())
}

/// Transpose the scalars within a slice of packed extension field elements.
///
/// The `src` buffer is vector of `n` field extension field elements, or alternatively viewed as an
/// n x d matrix of base field elements, where `d` is the extension degree. This transposes the
/// base field elements into a d x n matrix in row-major order.
pub fn transpose_scalars<P, FE, PE>(src: &[PE], dst: &mut [P]) -> Result<(), Error>
where
	P: PackedField,
	FE: ExtensionField<P::Scalar>,
	PE: PackedFieldIndexable<Scalar = FE> + RepackedExtension<P>,
{
	let len = src.len();
	if !len.is_power_of_two() {
		return Err(Error::InvalidBufferSize {
			param: "elems",
			msg: "power of two size required".to_string(),
		});
	}
	if dst.len() != len {
		return Err(Error::InvalidBufferSize {
			param: "dst",
			msg: "must have equal length to src buffer".to_string(),
		});
	}

	let log_d = FE::LOG_DEGREE;
	let log_n = log2_strict_usize(src.len()) + PE::LOG_WIDTH;

	if log_n < log_d {
		return Err(Error::InvalidBufferSize {
			param: "src",
			msg: "must have length at least 2^{d - w} where d is the extension degree and w is \
			the extension packing width"
				.to_string(),
		});
	}

	{
		let dst_ext = PE::cast_exts_mut(dst);
		transpose::transpose(
			PE::unpack_scalars(src),
			PE::unpack_scalars_mut(dst_ext),
			1 << log_d,
			1 << (log_n - log_d),
		);
	}
	square_transpose(log_d, dst)
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{
		BinaryField32b, PackedBinaryField128x1b, PackedBinaryField16x8b, PackedBinaryField4x32b,
		PackedBinaryField64x2b, PackedExtension,
	};

	#[test]
	fn test_square_transpose_128x1b() {
		let mut elems = [
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
		];
		square_transpose(3, &mut elems).unwrap();

		let expected = [
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
			PackedBinaryField128x1b::from(0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0u128),
		];
		assert_eq!(elems, expected);
	}

	#[test]
	fn test_square_transpose_128x1b_multi_row() {
		let mut elems = [
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField128x1b::from(0xffffffffffffffffffffffffffffffffu128),
		];
		square_transpose(1, &mut elems).unwrap();

		let expected = [
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
			PackedBinaryField128x1b::from(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaau128),
		];
		assert_eq!(elems, expected);
	}

	#[test]
	fn test_square_transpose_64x2b() {
		let mut elems = [
			PackedBinaryField64x2b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField64x2b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField64x2b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField64x2b::from(0x00000000000000000000000000000000u128),
			PackedBinaryField64x2b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField64x2b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField64x2b::from(0xffffffffffffffffffffffffffffffffu128),
			PackedBinaryField64x2b::from(0xffffffffffffffffffffffffffffffffu128),
		];
		square_transpose(3, &mut elems).unwrap();

		let expected = [
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
			0xff00ff00ff00ff00ff00ff00ff00ff00u128,
		]
		.map(PackedBinaryField64x2b::from);
		assert_eq!(elems, expected);
	}

	#[test]
	#[rustfmt::skip]
	fn test_transpose_scalars() {
		let elems = [
			[
				0x03020100,
				0x07060504,
				0x0b0a0908,
				0x0f0e0d0c,
			],
			[
				0x13121110,
				0x17161514,
				0x1b1a1918,
				0x1f1e1d1c,
			],
			[
				0x23222120,
				0x27262524,
				0x2b2a2928,
				0x2f2e2d2c,
			],
			[
				0x33323130,
				0x37363534,
				0x3b3a3938,
				0x3f3e3d3c,
			],
			[
				0x43424140,
				0x47464544,
				0x4b4a4948,
				0x4f4e4d4c,
			],
			[
				0x53525150,
				0x57565554,
				0x5b5a5958,
				0x5f5e5d5c,
			],
			[
				0x63626160,
				0x67666564,
				0x6b6a6968,
				0x6f6e6d6c,
			],
			[
				0x73727170,
				0x77767574,
				0x7b7a7978,
				0x7f7e7d7c,
			],
		].map(|vals| PackedBinaryField4x32b::from_scalars(vals.map(BinaryField32b::new)));

		let expected = [
			[0x0c080400, 0x1c181410, 0x2c282420, 0x3c383430],
			[0x4c484440, 0x5c585450, 0x6c686460, 0x7c787470],

			[0x0d090501, 0x1d191511, 0x2d292521, 0x3d393531],
			[0x4d494541, 0x5d595551, 0x6d696561, 0x7d797571],

			[0x0e0a0602, 0x1e1a1612, 0x2e2a2622, 0x3e3a3632],
			[0x4e4a4642, 0x5e5a5652, 0x6e6a6662, 0x7e7a7672],

			[0x0f0b0703, 0x1f1b1713, 0x2f2b2723, 0x3f3b3733],
			[0x4f4b4743, 0x5f5b5753, 0x6f6b6763, 0x7f7b7773],
		].map(|vals| PackedBinaryField4x32b::from_scalars(vals.map(BinaryField32b::new)));

		let mut dst = [PackedBinaryField4x32b::default(); 8];
		transpose_scalars::<PackedBinaryField16x8b,_,_>(&elems, PackedBinaryField4x32b::cast_bases_mut(&mut dst)).unwrap();
		assert_eq!(dst, expected);
	}
}