binius_field/
util.rs

1// Copyright 2024-2025 Irreducible Inc.
2
3use std::iter;
4
5use binius_maybe_rayon::prelude::*;
6use binius_utils::checked_arithmetics::checked_int_div;
7
8use crate::{packed::get_packed_slice_unchecked, ExtensionField, Field, PackedField};
9
10/// Computes the inner product of two vectors without checking that the lengths are equal
11pub fn inner_product_unchecked<F, FE>(
12	a: impl IntoIterator<Item = FE>,
13	b: impl IntoIterator<Item = F>,
14) -> FE
15where
16	F: Field,
17	FE: ExtensionField<F>,
18{
19	iter::zip(a, b).map(|(a_i, b_i)| a_i * b_i).sum()
20}
21
22/// Calculate inner product for potentially big slices of xs and ys.
23/// The number of elements in xs has to be less or equal to the number of elements in ys.
24pub fn inner_product_par<FX, PX, PY>(xs: &[PX], ys: &[PY]) -> FX
25where
26	PX: PackedField<Scalar = FX>,
27	PY: PackedField,
28	FX: ExtensionField<PY::Scalar>,
29{
30	assert!(
31		PX::WIDTH * xs.len() <= PY::WIDTH * ys.len(),
32		"Y elements has to be at least as wide as X elements"
33	);
34
35	// If number of elements in xs is less than number of elements in ys this will be because due to packing
36	// so we can use single-threaded version of the function.
37	if PX::WIDTH * xs.len() < PY::WIDTH * ys.len() {
38		return inner_product_unchecked(PackedField::iter_slice(xs), PackedField::iter_slice(ys));
39	}
40
41	let calc_product_by_ys = |xs: &[PX], ys: &[PY]| {
42		let mut result = FX::ZERO;
43
44		for (j, y) in ys.iter().enumerate() {
45			for (k, y) in y.iter().enumerate() {
46				result += unsafe { get_packed_slice_unchecked(xs, j * PY::WIDTH + k) } * y
47			}
48		}
49
50		result
51	};
52
53	// These magic numbers were chosen experimentally to have a reasonable performance
54	// for the calls with small number of elements.
55	// For different field sizes, the numbers may need to be adjusted.
56	const CHUNK_SIZE: usize = 64;
57	if ys.len() < 16 * CHUNK_SIZE {
58		calc_product_by_ys(xs, ys)
59	} else {
60		// According to benchmark results iterating by chunks here is more efficient than using `par_iter` with `min_length` directly.
61		ys.par_chunks(CHUNK_SIZE)
62			.enumerate()
63			.map(|(i, ys)| {
64				let offset = i * checked_int_div(CHUNK_SIZE * PY::WIDTH, PX::WIDTH);
65				calc_product_by_ys(&xs[offset..], ys)
66			})
67			.sum()
68	}
69}
70
71/// Evaluation of the 2-variate multilinear which indicates the condition x == y
72#[inline(always)]
73pub fn eq<F: Field>(x: F, y: F) -> F {
74	if F::CHARACTERISTIC == 2 {
75		// Optimize away the multiplication for binary fields
76		x + y + F::ONE
77	} else {
78		x * y + (F::ONE - x) * (F::ONE - y)
79	}
80}
81
82/// Iterate the powers of a given value, beginning with 1 (the 0'th power).
83pub fn powers<F: Field>(val: F) -> impl Iterator<Item = F> {
84	iter::successors(Some(F::ONE), move |&power| Some(power * val))
85}
86
87#[cfg(test)]
88mod tests {
89	use super::*;
90	use crate::PackedBinaryField4x32b;
91
92	type P = PackedBinaryField4x32b;
93	type F = <P as PackedField>::Scalar;
94
95	#[test]
96	fn test_inner_product_par_equal_length() {
97		// xs and ys have the same number of packed elements
98		let xs1 = F::new(1);
99		let xs2 = F::new(2);
100		let xs = vec![P::set_single(xs1), P::set_single(xs2)];
101		let ys1 = F::new(3);
102		let ys2 = F::new(4);
103		let ys = vec![P::set_single(ys1), P::set_single(ys2)];
104
105		let result = inner_product_par::<F, P, P>(&xs, &ys);
106		let expected = xs1 * ys1 + xs2 * ys2;
107
108		assert_eq!(result, expected);
109	}
110
111	#[test]
112	fn test_inner_product_par_unequal_length() {
113		// ys is larger than xs due to packing differences
114		let xs1 = F::new(1);
115		let xs = vec![P::set_single(xs1)];
116		let ys1 = F::new(2);
117		let ys2 = F::new(3);
118		let ys = vec![P::set_single(ys1), P::set_single(ys2)];
119
120		let result = inner_product_par::<F, P, P>(&xs, &ys);
121		let expected = xs1 * ys1;
122
123		assert_eq!(result, expected);
124	}
125
126	#[test]
127	fn test_inner_product_par_large_input_single_threaded() {
128		// Large input but not enough to trigger parallel execution
129		let size = 256;
130		let xs: Vec<P> = (0..size).map(|i| P::set_single(F::new(i as u32))).collect();
131		let ys: Vec<P> = (0..size)
132			.map(|i| P::set_single(F::new((i + 1) as u32)))
133			.collect();
134
135		let result = inner_product_par::<F, P, P>(&xs, &ys);
136
137		let expected = (0..size)
138			.map(|i| F::new(i as u32) * F::new((i + 1) as u32))
139			.sum::<F>();
140
141		assert_eq!(result, expected);
142	}
143
144	#[test]
145	fn test_inner_product_par_large_input_par() {
146		// Large input to test parallel execution
147		let size = 2000;
148		let xs: Vec<P> = (0..size).map(|i| P::set_single(F::new(i as u32))).collect();
149		let ys: Vec<P> = (0..size)
150			.map(|i| P::set_single(F::new((i + 1) as u32)))
151			.collect();
152
153		let result = inner_product_par::<F, P, P>(&xs, &ys);
154
155		let expected = (0..size)
156			.map(|i| F::new(i as u32) * F::new((i + 1) as u32))
157			.sum::<F>();
158
159		assert_eq!(result, expected);
160	}
161
162	#[test]
163	fn test_inner_product_par_empty() {
164		// Case: Empty input should return 0
165		let xs: Vec<P> = vec![];
166		let ys: Vec<P> = vec![];
167
168		let result = inner_product_par::<F, P, P>(&xs, &ys);
169		let expected = F::ZERO;
170
171		assert_eq!(result, expected);
172	}
173}