binius_m3/gadgets/hash/
groestl.rs

1// Copyright 2025 Irreducible Inc.
2
3//! Gadgets for verifying the [Grøstl] hash function.
4//!
5//! [Grøstl]: <https://www.groestl.info/>
6
7use std::{array, iter};
8
9use anyhow::Result;
10use array_util::ArrayExt;
11use binius_core::oracle::ShiftVariant;
12use binius_field::{
13	ext_basis,
14	linear_transformation::{
15		FieldLinearTransformation, PackedTransformationFactory, Transformation,
16	},
17	packed::{get_packed_slice, len_packed_slice, set_packed_slice},
18	AESTowerField8b, ExtensionField, PackedExtension, PackedField, PackedFieldIndexable,
19	PackedSubfield, TowerField,
20};
21
22use crate::builder::{upcast_col, Col, Expr, TableBuilder, TableWitnessSegment, B1, B128, B8};
23
24/// The first row of the circulant matrix defining the MixBytes step in Grøstl.
25const MIX_BYTES_VEC: [u8; 8] = [0x02, 0x02, 0x03, 0x04, 0x05, 0x03, 0x05, 0x07];
26
27/// The affine transformation matrix for the Rijndael S-box, isomorphically converted to the
28/// canonical tower basis.
29const S_BOX_TOWER_MATRIX: FieldLinearTransformation<B8> =
30	FieldLinearTransformation::new_const(&S_BOX_TOWER_MATRIX_COLS);
31
32const S_BOX_TOWER_MATRIX_COLS: [B8; 8] = [
33	B8::new(0x62),
34	B8::new(0xd2),
35	B8::new(0x79),
36	B8::new(0x41),
37	B8::new(0xf4),
38	B8::new(0xd5),
39	B8::new(0x81),
40	B8::new(0x4e),
41];
42
43/// The affine transformation offset for the Rijndael S-box, isomorphically converted to the
44/// canonical tower basis.
45const S_BOX_TOWER_OFFSET: B8 = B8::new(0x14);
46
47/// A Grøstl 512-bit state permutation.
48///
49/// The Grøstl hash function involves two permutations, P and Q, which are closely related. This
50/// gadget verifies one permutation, depending on the variant given as a constructor argument.
51///
52/// The state is represented as an array of 64 B8 elements, which is  isomorphic to the
53/// standard representation of bytes in a Grøstl state. This isomorphic representation is
54/// cheaper to verify with a Binius M3 constrant system.
55#[derive(Debug, Clone)]
56pub struct Permutation {
57	rounds: [PermutationRound; 10],
58}
59
60impl Permutation {
61	pub fn new(
62		table: &mut TableBuilder,
63		pq: PermutationVariant,
64		mut state_in: [Col<B8, 8>; 8],
65	) -> Self {
66		let rounds = array::from_fn(|i| {
67			let round = PermutationRound::new(
68				&mut table.with_namespace(format!("round[{}]", i)),
69				pq,
70				state_in,
71				i,
72			);
73			state_in = round.state_out;
74			round
75		});
76		Self { rounds }
77	}
78
79	/// Returns the input state columns.
80	pub fn state_in(&self) -> [Col<B8, 8>; 8] {
81		self.rounds[0].state_in
82	}
83
84	/// Returns the output state columns.
85	pub fn state_out(&self) -> [Col<B8, 8>; 8] {
86		self.rounds[9].state_out
87	}
88
89	pub fn populate<P>(&self, index: &mut TableWitnessSegment<P>) -> Result<()>
90	where
91		P: PackedFieldIndexable<Scalar = B128> + PackedExtension<B1> + PackedExtension<B8>,
92		PackedSubfield<P, B8>: PackedTransformationFactory<PackedSubfield<P, B8>>,
93	{
94		for round in &self.rounds {
95			round.populate(index)?;
96		}
97		Ok(())
98	}
99
100	/// Populate the input column of the witness with a full permutation state.
101	pub fn populate_state_in<'a, P>(
102		&self,
103		index: &mut TableWitnessSegment<P>,
104		states: impl IntoIterator<Item = &'a [B8; 64]>,
105	) -> Result<()>
106	where
107		P: PackedExtension<B8>,
108		P::Scalar: TowerField,
109	{
110		let mut state_in = self
111			.state_in()
112			.try_map_ext(|state_in_i| index.get_mut(state_in_i))?;
113		for (k, state_k) in states.into_iter().enumerate() {
114			for (i, state_in_i) in state_in.iter_mut().enumerate() {
115				for j in 0..8 {
116					set_packed_slice(state_in_i, k * 8 + j, state_k[j * 8 + i]);
117				}
118			}
119		}
120		Ok(())
121	}
122
123	/// Reads the state outputs from the witness index.
124	///
125	/// This is currently only used for testing.
126	pub fn read_state_outs<'a, P>(
127		&'a self,
128		index: &'a mut TableWitnessSegment<'a, P>,
129	) -> Result<impl Iterator<Item = [B8; 64]> + 'a>
130	where
131		P: PackedExtension<B8>,
132		P::Scalar: TowerField,
133	{
134		let state_out = self
135			.state_out()
136			.try_map_ext(|state_out_i| index.get(state_out_i))?;
137		let iter = (0..index.log_size()).map(move |k| {
138			array::from_fn(|ij| {
139				let i = ij % 8;
140				let j = ij / 8;
141				get_packed_slice(&state_out[i], k * 8 + j)
142			})
143		});
144		Ok(iter)
145	}
146}
147
148#[derive(Debug, Clone, Copy, PartialEq, Eq, derive_more::Display)]
149pub enum PermutationVariant {
150	P,
151	Q,
152}
153
154impl PermutationVariant {
155	/// Returns the number of bytes to shift column `i` by in the ShiftBytes step.
156	///
157	/// The Grøstl specification presents the ShiftBytes step as a circular shift of the rows of
158	/// the state; in this gadget, the state is transposed so that we shift columns instead.
159	fn shift_bytes_offset(self, i: usize) -> usize {
160		const P_SHIFTS: [usize; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
161		const Q_SHIFTS: [usize; 8] = [1, 3, 5, 7, 0, 2, 4, 6];
162		let right_shift = match self {
163			PermutationVariant::P => P_SHIFTS[i],
164			PermutationVariant::Q => Q_SHIFTS[i],
165		};
166		// Left rotation amount
167		(8 - right_shift) % 8
168	}
169}
170
171fn round_consts(round: usize) -> [B8; 8] {
172	array::from_fn(|i| {
173		let val = (i * 0x10) ^ round;
174		B8::from(AESTowerField8b::new(val as u8))
175	})
176}
177
178/// A single round of a Grøstl permutation.
179#[derive(Debug, Clone)]
180struct PermutationRound {
181	pq: PermutationVariant,
182	round: usize,
183	// Inputs
184	pub state_in: [Col<B8, 8>; 8],
185	// Private
186	round_const: Col<B8, 8>,
187	sbox: [SBox<8>; 8],
188	shift: [Col<B8, 8>; 8],
189	// Outputs
190	pub state_out: [Col<B8, 8>; 8],
191}
192
193impl PermutationRound {
194	pub fn new(
195		table: &mut TableBuilder,
196		pq: PermutationVariant,
197		state_in: [Col<B8, 8>; 8],
198		round: usize,
199	) -> Self {
200		let round_const = table.add_constant("RoundConstant", round_consts(round));
201
202		// AddRoundConstant + SubBytes
203		let sbox = array::from_fn(|i| {
204			let sbox_in = match (i, pq) {
205				(0, PermutationVariant::P) => state_in[0] + round_const,
206				(_, PermutationVariant::P) => state_in[i].into(),
207				(7, PermutationVariant::Q) => {
208					state_in[7] + round_const + B8::from(AESTowerField8b::new(0xFF))
209				}
210				(_, PermutationVariant::Q) => state_in[i] + B8::from(AESTowerField8b::new(0xFF)),
211			};
212			SBox::new(&mut table.with_namespace(format!("SubBytes[{i}]")), sbox_in)
213		});
214
215		// ShiftBytes
216		let shift = array::from_fn(|i| {
217			let offset = pq.shift_bytes_offset(i);
218			if offset == 0 {
219				sbox[i].output
220			} else {
221				table.add_shifted(
222					format!("ShiftBytes[{i}]"),
223					sbox[i].output,
224					3,
225					offset,
226					ShiftVariant::CircularLeft,
227				)
228			}
229		});
230
231		// MixBytes
232		let mix_bytes_scalars = MIX_BYTES_VEC.map(|byte| B8::from(AESTowerField8b::new(byte)));
233		let state_out = array::from_fn(|j| {
234			let mix_bytes: [_; 8] =
235				array::from_fn(|i| shift[i] * mix_bytes_scalars[(8 + i - j) % 8]);
236			table.add_computed(
237				format!("MixBytes[{j}]"),
238				mix_bytes
239					.into_iter()
240					.reduce(|a, b| a + b)
241					.expect("mix_bytes has length 8"),
242			)
243		});
244
245		Self {
246			pq,
247			round,
248			state_in,
249			round_const,
250			sbox,
251			shift,
252			state_out,
253		}
254	}
255
256	pub fn populate<P>(&self, index: &mut TableWitnessSegment<P>) -> Result<()>
257	where
258		P: PackedFieldIndexable<Scalar = B128> + PackedExtension<B1> + PackedExtension<B8>,
259		PackedSubfield<P, B8>: PackedTransformationFactory<PackedSubfield<P, B8>>,
260	{
261		{
262			let mut round_const = index.get_mut(self.round_const)?;
263			let round_consts = round_consts(self.round);
264			for k in 0..len_packed_slice(&round_const) {
265				set_packed_slice(&mut round_const, k, round_consts[k % 8]);
266			}
267		}
268
269		// AddRoundConstant + SubBytes
270		for sbox in &self.sbox {
271			sbox.populate(index)?;
272		}
273
274		// ShiftBytes
275		for (i, (sbox, shift)) in iter::zip(&self.sbox, self.shift).enumerate() {
276			if sbox.output == shift {
277				continue;
278			}
279
280			let sbox_out = index.get_as::<u64, _, 8>(sbox.output)?;
281			let mut shift = index.get_mut_as::<u64, _, 8>(shift)?;
282
283			// TODO: Annoying that this is duplicated. We could inspect the column definitions to
284			// figure this out.
285			let offset = self.pq.shift_bytes_offset(i);
286			for (sbox_out_j, shift_j) in iter::zip(&*sbox_out, &mut *shift) {
287				*shift_j = sbox_out_j.rotate_left((offset * 8) as u32);
288			}
289		}
290
291		// MixBytes
292		// TODO: Do the fancy trick from the Groestl implementation guide to reduce
293		// multiplications.
294		let mix_bytes_scalars = MIX_BYTES_VEC.map(|byte| B8::from(AESTowerField8b::new(byte)));
295		let shift: [_; 8] = array_util::try_from_fn(|i| index.get(self.shift[i]))?;
296		for j in 0..8 {
297			let mut mix_bytes_out = index.get_mut(self.state_out[j])?;
298			for (k, mix_bytes_out_k) in mix_bytes_out.iter_mut().enumerate() {
299				*mix_bytes_out_k = (0..8)
300					.map(|i| shift[i][k] * mix_bytes_scalars[(8 + i - j) % 8])
301					.sum();
302			}
303		}
304
305		Ok(())
306	}
307}
308
309/// A gadget for the [Rijndael S-box].
310///
311/// The Rijndael S-box, used in the AES block cipher, is a non-linear substitution box that is
312/// defined as a composition of field inversion and an $\mathbb{F}_2$-affine transformation on
313/// elements of $\mathbb{F}_{2^8}$. The S-box is typically defined over a univariate basis
314/// representation of $\mathbb{F}_{2^8}$, which is [`binius_field::AESTowerField8b`], thought we
315/// can translate the S-box to a transformation on [`B8`] elements, which are isomorphic.
316///
317/// [Rijndael S-box]: <https://en.wikipedia.org/wiki/Rijndael_S-box>
318#[derive(Debug, Clone)]
319struct SBox<const V: usize> {
320	input: Expr<B8, V>,
321	/// Bits of the inverse of the input, in AES basis.
322	inv_bits: [Col<B1, V>; 8],
323	inv: Col<B8, V>,
324	pub output: Col<B8, V>,
325}
326
327impl<const V: usize> SBox<V> {
328	pub fn new(table: &mut TableBuilder, input: Expr<B8, V>) -> Self {
329		let inv_bits = array::from_fn(|i| table.add_committed(format!("inv_bits[{}]", i)));
330		let inv = table.add_computed("inv", pack_b8(inv_bits));
331
332		// input * inv == 1 OR inv == 0
333		table.assert_zero("inv_valid_or_inv_zero", input.clone() * Expr::from(inv).pow(2) - inv);
334		// input * inv == 1 OR input == 0
335		table.assert_zero("inv_valid_or_input_zero", input.clone().pow(2) * inv - input.clone());
336
337		// Rijndael S-box affine transformation
338		let linear_transform_expr = iter::zip(inv_bits, S_BOX_TOWER_MATRIX_COLS)
339			.map(|(inv_bit_i, scalar)| upcast_col(inv_bit_i) * scalar)
340			.reduce(|a, b| a + b)
341			.expect("inv_bits and S_BOX_TOWER_MATRIX_COLS have length 8");
342		let output =
343			table.add_computed("output", linear_transform_expr.clone() + S_BOX_TOWER_OFFSET);
344
345		Self {
346			input,
347			inv_bits,
348			inv,
349			output,
350		}
351	}
352
353	pub fn populate<P>(&self, index: &mut TableWitnessSegment<P>) -> Result<()>
354	where
355		P: PackedField<Scalar = B128> + PackedExtension<B1> + PackedExtension<B8>,
356		PackedSubfield<P, B8>: PackedTransformationFactory<PackedSubfield<P, B8>>,
357	{
358		let mut inv = index.get_mut(self.inv)?;
359
360		// Populate the inverse of the input.
361		for (inv_i, val_i) in iter::zip(&mut *inv, index.eval_expr(&self.input)?) {
362			*inv_i = val_i.invert_or_zero();
363		}
364
365		// Decompose the inverse bits.
366		let mut inv_bits = self
367			.inv_bits
368			.try_map_ext(|inv_bits_i| index.get_mut(inv_bits_i))?;
369		for i in 0..index.size() * V {
370			let inv_val = get_packed_slice(&inv, i);
371			for (j, inv_bit_j) in ExtensionField::<B1>::iter_bases(&inv_val).enumerate() {
372				set_packed_slice(&mut inv_bits[j], i, inv_bit_j);
373			}
374		}
375
376		// Apply the F2-linear transformation and populate the output.
377		let mut output = index.get_mut(self.output)?;
378
379		let transform_matrix =
380			<PackedSubfield<P, B8>>::make_packed_transformation(S_BOX_TOWER_MATRIX);
381		let transform_offset = <PackedSubfield<P, B8>>::broadcast(S_BOX_TOWER_OFFSET);
382		for (out_i, inv_i) in iter::zip(&mut *output, &*inv) {
383			*out_i = transform_offset + transform_matrix.transform(inv_i);
384		}
385
386		Ok(())
387	}
388}
389
390fn pack_b8<const V: usize>(bits: [Col<B1, V>; 8]) -> Expr<B8, V> {
391	let b8_basis: [_; 8] = array::from_fn(ext_basis::<B8, B1>);
392	bits.into_iter()
393		.enumerate()
394		.map(|(i, bit)| upcast_col(bit) * b8_basis[i])
395		.reduce(|a, b| a + b)
396		.expect("bits has length 8")
397}
398
399#[cfg(test)]
400mod tests {
401	use std::iter::repeat_with;
402
403	use binius_field::{
404		arch::OptimalUnderlier128b, arithmetic_traits::InvertOrZero, as_packed_field::PackedType,
405	};
406	use binius_hash::groestl::{GroestlShortImpl, GroestlShortInternal};
407	use bumpalo::Bump;
408	use rand::{prelude::StdRng, SeedableRng};
409
410	use super::*;
411	use crate::builder::{ConstraintSystem, Statement};
412
413	#[test]
414	fn test_sbox() {
415		let mut cs = ConstraintSystem::new();
416		let mut table = cs.add_table("sbox test");
417
418		let input = table.add_committed::<B8, 2>("input");
419		let sbox = SBox::new(&mut table, input + B8::new(0xFF));
420
421		let table_id = table.id();
422
423		let allocator = Bump::new();
424
425		let statement = Statement {
426			boundaries: vec![],
427			table_sizes: vec![1 << 8],
428		};
429		let mut witness = cs
430			.build_witness::<PackedType<OptimalUnderlier128b, B128>>(&allocator, &statement)
431			.unwrap();
432
433		let table_witness = witness.get_table(table_id).unwrap();
434
435		let mut rng = StdRng::seed_from_u64(0);
436		let mut segment = table_witness.full_segment();
437		for in_i in &mut *segment.get_mut(input).unwrap() {
438			*in_i = PackedField::random(&mut rng);
439		}
440
441		sbox.populate(&mut segment).unwrap();
442
443		let ccs = cs.compile(&statement).unwrap();
444		let witness = witness.into_multilinear_extension_index();
445
446		binius_core::constraint_system::validate::validate_witness(&ccs, &[], &witness).unwrap();
447	}
448
449	#[test]
450	fn test_p_permutation() {
451		let mut cs = ConstraintSystem::new();
452		let mut table = cs.add_table("P-permutation test");
453
454		let input = table.add_committed_multiple::<B8, 8, 8>("state_in");
455		let perm = Permutation::new(&mut table, PermutationVariant::P, input);
456
457		let table_id = table.id();
458
459		let allocator = Bump::new();
460
461		let statement = Statement {
462			boundaries: vec![],
463			table_sizes: vec![1 << 8],
464		};
465		let mut witness = cs
466			.build_witness::<PackedType<OptimalUnderlier128b, B128>>(&allocator, &statement)
467			.unwrap();
468
469		let table_witness = witness.get_table(table_id).unwrap();
470
471		let mut rng = StdRng::seed_from_u64(0);
472		let in_states = repeat_with(|| array::from_fn::<_, 64, _>(|_| B8::random(&mut rng)))
473			.take(1 << 8)
474			.collect::<Vec<_>>();
475		let out_states = in_states
476			.iter()
477			.map(|in_state| {
478				let in_state_bytes = in_state.map(|b8| AESTowerField8b::from(b8).val());
479				let mut state = GroestlShortImpl::state_from_bytes(&in_state_bytes);
480				GroestlShortImpl::p_perm(&mut state);
481				let out_state_bytes = GroestlShortImpl::state_to_bytes(&state);
482				out_state_bytes.map(|byte| B8::from(AESTowerField8b::new(byte)))
483			})
484			.collect::<Vec<_>>();
485
486		let mut segment = table_witness.full_segment();
487		perm.populate_state_in(&mut segment, in_states.iter())
488			.unwrap();
489		perm.populate(&mut segment).unwrap();
490
491		for (expected_out, generated_out) in
492			iter::zip(out_states, perm.read_state_outs(&mut segment).unwrap())
493		{
494			assert_eq!(generated_out, expected_out);
495		}
496
497		let ccs = cs.compile(&statement).unwrap();
498		let witness = witness.into_multilinear_extension_index();
499
500		binius_core::constraint_system::validate::validate_witness(&ccs, &[], &witness).unwrap();
501	}
502
503	#[test]
504	fn test_q_permutation() {
505		let mut cs = ConstraintSystem::new();
506		let mut table = cs.add_table("Q-permutation test");
507
508		let input = table.add_committed_multiple::<B8, 8, 8>("state_in");
509		let perm = Permutation::new(&mut table, PermutationVariant::Q, input);
510
511		let table_id = table.id();
512
513		let allocator = Bump::new();
514
515		let statement = Statement {
516			boundaries: vec![],
517			table_sizes: vec![1 << 8],
518		};
519		let mut witness = cs
520			.build_witness::<PackedType<OptimalUnderlier128b, B128>>(&allocator, &statement)
521			.unwrap();
522
523		let table_witness = witness.get_table(table_id).unwrap();
524
525		let mut rng = StdRng::seed_from_u64(0);
526		let in_states = repeat_with(|| array::from_fn::<_, 64, _>(|_| B8::random(&mut rng)))
527			.take(1 << 8)
528			.collect::<Vec<_>>();
529		let out_states = in_states
530			.iter()
531			.map(|in_state| {
532				let in_state_bytes = in_state.map(|b8| AESTowerField8b::from(b8).val());
533				let mut state = GroestlShortImpl::state_from_bytes(&in_state_bytes);
534				GroestlShortImpl::q_perm(&mut state);
535				let out_state_bytes = GroestlShortImpl::state_to_bytes(&state);
536				out_state_bytes.map(|byte| B8::from(AESTowerField8b::new(byte)))
537			})
538			.collect::<Vec<_>>();
539
540		let mut segment = table_witness.full_segment();
541		perm.populate_state_in(&mut segment, in_states.iter())
542			.unwrap();
543		perm.populate(&mut segment).unwrap();
544
545		for (expected_out, generated_out) in
546			iter::zip(out_states, perm.read_state_outs(&mut segment).unwrap())
547		{
548			assert_eq!(generated_out, expected_out);
549		}
550
551		let ccs = cs.compile(&statement).unwrap();
552		let witness = witness.into_multilinear_extension_index();
553
554		binius_core::constraint_system::validate::validate_witness(&ccs, &[], &witness).unwrap();
555	}
556
557	#[test]
558	fn test_isomorphic_sbox() {
559		#[rustfmt::skip]
560		const S_BOX: [u8; 256] = [
561			0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
562			0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
563			0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
564			0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
565			0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
566			0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
567			0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
568			0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
569			0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
570			0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
571			0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
572			0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
573			0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
574			0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
575			0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
576			0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
577		];
578
579		const S_BOX_MATRIX: FieldLinearTransformation<AESTowerField8b> =
580			FieldLinearTransformation::new_const(&[
581				AESTowerField8b::new(0x1F),
582				AESTowerField8b::new(0x3E),
583				AESTowerField8b::new(0x7C),
584				AESTowerField8b::new(0xF8),
585				AESTowerField8b::new(0xF1),
586				AESTowerField8b::new(0xE3),
587				AESTowerField8b::new(0xC7),
588				AESTowerField8b::new(0x8F),
589			]);
590		const S_BOX_OFFSET: AESTowerField8b = AESTowerField8b::new(0x63);
591
592		for i in 0u8..=255u8 {
593			let sbox_in = AESTowerField8b::new(i);
594			let expected_sbox_out = AESTowerField8b::new(S_BOX[i as usize]);
595
596			let sbox_out =
597				S_BOX_MATRIX.transform(&InvertOrZero::invert_or_zero(sbox_in)) + S_BOX_OFFSET;
598			assert_eq!(sbox_out, expected_sbox_out);
599
600			let sbox_in_b8 = B8::from(sbox_in);
601			let sbox_out_b8 = S_BOX_TOWER_MATRIX
602				.transform(&InvertOrZero::invert_or_zero(sbox_in_b8))
603				+ S_BOX_TOWER_OFFSET;
604			assert_eq!(AESTowerField8b::from(sbox_out_b8), expected_sbox_out);
605		}
606	}
607}