binius_math/
multilinear_extension.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// Copyright 2023-2024 Irreducible Inc.

use crate::{Error, MultilinearQueryRef, PackingDeref};
use binius_field::{
	as_packed_field::{AsSinglePacked, PackScalar, PackedType},
	packed::{get_packed_slice, iter_packed_slice},
	underlier::UnderlierType,
	util::inner_product_par,
	ExtensionField, Field, PackedField,
};
use binius_utils::bail;
use bytemuck::zeroed_vec;
use p3_util::log2_strict_usize;
use rayon::prelude::*;
use std::{cmp::min, fmt::Debug, mem::size_of_val, ops::Deref, slice::from_raw_parts};

/// A multilinear polynomial represented by its evaluations over the boolean hypercube.
///
/// This polynomial can also be viewed as the multilinear extension of the slice of hypercube
/// evaluations. The evaluation data may be either a borrowed or owned slice.
///
/// The packed field width must be a power of two.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MultilinearExtension<P: PackedField, Data: Deref<Target = [P]> = Vec<P>> {
	// The number of variables
	mu: usize,
	// The evaluations of the polynomial over the boolean hypercube, in lexicographic order
	evals: Data,
}

impl<P: PackedField> MultilinearExtension<P> {
	pub fn zeros(n_vars: usize) -> Result<Self, Error> {
		assert!(P::WIDTH.is_power_of_two());
		if n_vars < log2_strict_usize(P::WIDTH) {
			bail!(Error::ArgumentRangeError {
				arg: "n_vars".to_string(),
				range: log2_strict_usize(P::WIDTH)..32,
			});
		}

		Ok(MultilinearExtension {
			mu: n_vars,
			evals: vec![P::default(); 1 << (n_vars - log2(P::WIDTH))],
		})
	}

	pub fn from_values(v: Vec<P>) -> Result<Self, Error> {
		MultilinearExtension::from_values_generic(v)
	}
}

impl<P: PackedField, Data: Deref<Target = [P]>> MultilinearExtension<P, Data> {
	pub fn from_values_generic(v: Data) -> Result<Self, Error> {
		if !v.len().is_power_of_two() {
			bail!(Error::PowerOfTwoLengthRequired);
		}
		let mu = log2(v.len()) + P::LOG_WIDTH;

		Ok(Self { mu, evals: v })
	}

	pub fn new(n_vars: usize, v: Data) -> Result<Self, Error> {
		if !v.len().is_power_of_two() {
			bail!(Error::PowerOfTwoLengthRequired);
		}

		if n_vars < P::LOG_WIDTH {
			if v.len() != 1 {
				bail!(Error::IncorrectNumberOfVariables {
					expected: n_vars,
					actual: P::LOG_WIDTH + log2(v.len())
				});
			}

			for i in (1 << n_vars)..P::LOG_WIDTH {
				unsafe {
					if v[0].get_unchecked(i) != P::Scalar::ZERO {
						bail!(Error::IncorrectNumberOfVariables {
							expected: n_vars,
							actual: i
						});
					};
				}
			}
		} else if P::LOG_WIDTH + log2(v.len()) != n_vars {
			bail!(Error::IncorrectNumberOfVariables {
				expected: n_vars,
				actual: P::LOG_WIDTH + log2(v.len())
			});
		}

		Ok(Self {
			mu: n_vars,
			evals: v,
		})
	}

	pub fn ref_underlier_data(&self) -> &[u8] {
		let p_slice = self.evals();
		unsafe { from_raw_parts(p_slice.as_ptr() as *const u8, size_of_val(p_slice)) }
	}
}

impl<U, F, Data> MultilinearExtension<PackedType<U, F>, PackingDeref<U, F, Data>>
where
	// TODO: Add U: Divisible<u8>.
	U: UnderlierType + PackScalar<F>,
	F: Field,
	Data: Deref<Target = [U]>,
{
	pub fn from_underliers(v: Data) -> Result<Self, Error> {
		MultilinearExtension::from_values_generic(PackingDeref::new(v))
	}
}

impl<'a, P: PackedField> MultilinearExtension<P, &'a [P]> {
	pub fn from_values_slice(v: &'a [P]) -> Result<Self, Error> {
		if !v.len().is_power_of_two() {
			bail!(Error::PowerOfTwoLengthRequired);
		}
		let mu = log2(v.len() * P::WIDTH);
		Ok(Self { mu, evals: v })
	}
}

impl<P: PackedField, Data: Deref<Target = [P]>> MultilinearExtension<P, Data> {
	pub fn n_vars(&self) -> usize {
		self.mu
	}

	pub fn size(&self) -> usize {
		1 << self.mu
	}

	pub fn evals(&self) -> &[P] {
		self.evals.as_ref()
	}

	pub fn to_ref(&self) -> MultilinearExtension<P, &[P]> {
		MultilinearExtension {
			mu: self.mu,
			evals: self.evals(),
		}
	}

	/// Get the evaluations of the polynomial on a subcube of the hypercube of size equal to the
	/// packing width.
	///
	/// # Arguments
	///
	/// * `index` - The index of the subcube
	pub fn packed_evaluate_on_hypercube(&self, index: usize) -> Result<P, Error> {
		self.evals()
			.get(index)
			.ok_or(Error::HypercubeIndexOutOfRange { index })
			.copied()
	}

	pub fn evaluate_on_hypercube(&self, index: usize) -> Result<P::Scalar, Error> {
		if self.size() <= index {
			bail!(Error::HypercubeIndexOutOfRange { index })
		}

		let subcube_eval = self.packed_evaluate_on_hypercube(index / P::WIDTH)?;
		Ok(subcube_eval.get(index % P::WIDTH))
	}
}

impl<P, Data> MultilinearExtension<P, Data>
where
	P: PackedField,
	Data: Deref<Target = [P]> + Send + Sync,
{
	pub fn evaluate<'a, FE, PE>(
		&self,
		query: impl Into<MultilinearQueryRef<'a, PE>>,
	) -> Result<FE, Error>
	where
		FE: ExtensionField<P::Scalar>,
		PE: PackedField<Scalar = FE>,
	{
		let query = query.into();
		if self.mu != query.n_vars() {
			bail!(Error::IncorrectQuerySize { expected: self.mu });
		}
		Ok(inner_product_par(query.expansion(), &self.evals))
	}

	/// Partially evaluate the polynomial with assignment to the high-indexed variables.
	///
	/// The polynomial is multilinear with $\mu$ variables, $p(X_0, ..., X_{\mu - 1}$. Given a query
	/// vector of length $k$ representing $(z_{\mu - k + 1}, ..., z_{\mu - 1})$, this returns the
	/// multilinear polynomial with $\mu - k$ variables,
	/// $p(X_0, ..., X_{\mu - k}, z_{\mu - k + 1}, ..., z_{\mu - 1})$.
	///
	/// REQUIRES: the size of the resulting polynomial must have a length which is a multiple of
	/// PE::WIDTH, i.e. 2^(\mu - k) \geq PE::WIDTH, since WIDTH is power of two
	pub fn evaluate_partial_high<'a, PE>(
		&self,
		query: impl Into<MultilinearQueryRef<'a, PE>>,
	) -> Result<MultilinearExtension<PE>, Error>
	where
		PE: PackedField,
		PE::Scalar: ExtensionField<P::Scalar>,
	{
		let query = query.into();
		if self.mu < query.n_vars() {
			bail!(Error::IncorrectQuerySize { expected: self.mu });
		}

		let query_expansion = query.expansion();
		let new_n_vars = self.mu - query.n_vars();
		let result_evals_len = 1 << (new_n_vars.saturating_sub(PE::LOG_WIDTH));

		// This operation is a left vector-Array2D product of the vector of tensor product-expanded
		// query coefficients with the Array2D of multilinear coefficients.
		let result_evals = (0..result_evals_len)
			.into_par_iter()
			.map(|outer_index| {
				let mut res = PE::default();
				for inner_index in 0..min(PE::WIDTH, 1 << new_n_vars) {
					res.set(
						inner_index,
						iter_packed_slice(query_expansion)
							.take(1 << query.n_vars())
							.enumerate()
							.map(|(query_index, basis_eval)| {
								let eval_index = (query_index << new_n_vars)
									| (outer_index << PE::LOG_WIDTH)
									| inner_index;
								let subpoly_eval_i = get_packed_slice(&self.evals, eval_index);
								basis_eval * subpoly_eval_i
							})
							.sum(),
					);
				}
				res
			})
			.collect();
		MultilinearExtension::new(new_n_vars, result_evals)
	}

	/// Partially evaluate the polynomial with assignment to the low-indexed variables.
	///
	/// The polynomial is multilinear with $\mu$ variables, $p(X_0, ..., X_{\mu-1}$. Given a query
	/// vector of length $k$ representing $(z_0, ..., z_{k-1})$, this returns the
	/// multilinear polynomial with $\mu - k$ variables,
	/// $p(z_0, ..., z_{k-1}, X_k, ..., X_{\mu - 1})$.
	///
	/// REQUIRES: the size of the resulting polynomial must have a length which is a multiple of
	/// P::WIDTH, i.e. 2^(\mu - k) \geq P::WIDTH, since WIDTH is power of two
	pub fn evaluate_partial_low<'a, PE>(
		&self,
		query: impl Into<MultilinearQueryRef<'a, PE>>,
	) -> Result<MultilinearExtension<PE>, Error>
	where
		PE: PackedField,
		PE::Scalar: ExtensionField<P::Scalar>,
	{
		let query = query.into();
		if self.mu < query.n_vars() {
			bail!(Error::IncorrectQuerySize { expected: self.mu });
		}

		let new_n_vars = self.mu - query.n_vars();

		let mut result =
			zeroed_vec(1 << ((self.mu - query.n_vars()).saturating_sub(PE::LOG_WIDTH)));
		self.evaluate_partial_low_into(query, &mut result)?;
		MultilinearExtension::new(new_n_vars, result)
	}

	/// Partially evaluate the polynomial with assignment to the low-indexed variables.
	///
	/// The polynomial is multilinear with $\mu$ variables, $p(X_0, ..., X_{\mu-1}$. Given a query
	/// vector of length $k$ representing $(z_0, ..., z_{k-1})$, this returns the
	/// multilinear polynomial with $\mu - k$ variables,
	/// $p(z_0, ..., z_{k-1}, X_k, ..., X_{\mu - 1})$.
	///
	/// REQUIRES: the size of the resulting polynomial must have a length which is a multiple of
	/// P::WIDTH, i.e. 2^(\mu - k) \geq P::WIDTH, since WIDTH is power of two
	pub fn evaluate_partial_low_into<PE>(
		&self,
		query: MultilinearQueryRef<PE>,
		out: &mut [PE],
	) -> Result<(), Error>
	where
		PE: PackedField,
		PE::Scalar: ExtensionField<P::Scalar>,
	{
		if self.mu < query.n_vars() {
			bail!(Error::IncorrectQuerySize { expected: self.mu });
		}
		if out.len() != 1 << ((self.mu - query.n_vars()).saturating_sub(PE::LOG_WIDTH)) {
			bail!(Error::IncorrectOutputPolynomialSize {
				expected: self.mu - query.n_vars(),
			});
		}

		const CHUNK_SIZE: usize = 64;
		let n_vars = query.n_vars();
		let query_expansion = query.expansion();
		let packed_result_evals = out;
		packed_result_evals
			.par_chunks_mut(CHUNK_SIZE)
			.enumerate()
			.for_each(|(i, packed_result_evals)| {
				for (k, packed_result_eval) in packed_result_evals.iter_mut().enumerate() {
					let offset = i * CHUNK_SIZE;
					for j in 0..min(PE::WIDTH, 1 << (self.mu - n_vars)) {
						let index = ((offset + k) << PE::LOG_WIDTH) | j;

						let offset = index << n_vars;

						let mut result_eval = PE::Scalar::ZERO;
						for (t, query_expansion) in iter_packed_slice(query_expansion)
							.take(1 << n_vars)
							.enumerate()
						{
							result_eval +=
								query_expansion * get_packed_slice(&self.evals, t + offset);
						}

						// Safety: `j` < `PE::WIDTH`
						unsafe {
							packed_result_eval.set_unchecked(j, result_eval);
						}
					}
				}
			});

		Ok(())
	}
}

impl<F: Field + AsSinglePacked, Data: Deref<Target = [F]>> MultilinearExtension<F, Data> {
	/// Convert MultilinearExtension over a scalar to a MultilinearExtension over a packed field with single element.
	pub fn to_single_packed(self) -> MultilinearExtension<F::Packed> {
		let packed_evals = self
			.evals
			.iter()
			.map(|eval| eval.to_single_packed())
			.collect();
		MultilinearExtension {
			mu: self.mu,
			evals: packed_evals,
		}
	}
}

/// Expand the tensor product of the query values.
///
/// [`query`] is a sequence of field elements $z_0, ..., z_{k-1}$.
///
/// This naive implementation runs in O(k 2^k) time and O(1) space.
#[allow(dead_code)]
fn expand_query_naive<F: Field>(query: &[F]) -> Result<Vec<F>, Error> {
	let query_len: u32 = query
		.len()
		.try_into()
		.map_err(|_| Error::TooManyVariables)?;
	let size = 2usize
		.checked_pow(query_len)
		.ok_or(Error::TooManyVariables)?;

	let result = (0..size).map(|i| eval_basis(query, i)).collect();
	Ok(result)
}

/// Evaluates the Lagrange basis polynomial over the boolean hypercube at a queried point.
#[allow(dead_code)]
fn eval_basis<F: Field>(query: &[F], i: usize) -> F {
	query
		.iter()
		.enumerate()
		.map(|(j, &v)| if i & (1 << j) == 0 { F::ONE - v } else { v })
		.product()
}

fn log2(v: usize) -> usize {
	63 - (v as u64).leading_zeros() as usize
}

/// Type alias for the common pattern of a [`MultilinearExtension`] backed by borrowed data.
pub type MultilinearExtensionBorrowed<'a, P> = MultilinearExtension<P, &'a [P]>;

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{tensor_prod_eq_ind, MultilinearQuery};
	use binius_field::{
		BinaryField128b, BinaryField16b as F, BinaryField32b, BinaryField8b,
		PackedBinaryField16x8b, PackedBinaryField4x32b, PackedBinaryField8x16b as P,
	};
	use itertools::Itertools;
	use rand::{rngs::StdRng, SeedableRng};
	use std::iter::repeat_with;

	fn multilinear_query<P: PackedField>(p: &[P::Scalar]) -> MultilinearQuery<P, Vec<P>> {
		let mut result = vec![P::default(); 1 << p.len().saturating_sub(P::LOG_WIDTH)];
		result[0] = P::set_single(P::Scalar::ONE);
		tensor_prod_eq_ind(0, &mut result, p).unwrap();
		MultilinearQuery::with_expansion(p.len(), result).unwrap()
	}

	#[test]
	fn test_expand_query_impls_consistent() {
		let mut rng = StdRng::seed_from_u64(0);
		let q = repeat_with(|| Field::random(&mut rng))
			.take(8)
			.collect::<Vec<F>>();
		let result1 = multilinear_query::<P>(&q);
		let result2 = expand_query_naive(&q).unwrap();
		assert_eq!(iter_packed_slice(result1.expansion()).collect_vec(), result2);
	}

	#[test]
	fn test_new_from_values_correspondence() {
		let mut rng = StdRng::seed_from_u64(0);
		let evals = repeat_with(|| Field::random(&mut rng))
			.take(256)
			.collect::<Vec<F>>();
		let poly1 = MultilinearExtension::from_values(evals.clone()).unwrap();
		let poly2 = MultilinearExtension::new(8, evals).unwrap();

		assert_eq!(poly1, poly2)
	}

	#[test]
	fn test_evaluate_on_hypercube() {
		let mut values = vec![F::ZERO; 64];
		values
			.iter_mut()
			.enumerate()
			.for_each(|(i, val)| *val = F::new(i as u16));

		let poly = MultilinearExtension::from_values(values).unwrap();
		for i in 0..64 {
			let q = (0..6)
				.map(|j| if (i >> j) & 1 != 0 { F::ONE } else { F::ZERO })
				.collect::<Vec<_>>();
			let multilin_query = multilinear_query::<P>(&q);
			let result = poly.evaluate(multilin_query.to_ref()).unwrap();
			assert_eq!(result, F::new(i));
		}
	}

	fn evaluate_split<P>(
		poly: MultilinearExtension<P>,
		q: &[P::Scalar],
		splits: &[usize],
	) -> P::Scalar
	where
		P: PackedField + 'static,
	{
		assert_eq!(splits.iter().sum::<usize>(), poly.n_vars());

		let mut partial_result = poly;
		let mut index = q.len();
		for split_vars in splits[0..splits.len() - 1].iter() {
			let split_vars = *split_vars;
			let query = multilinear_query(&q[index - split_vars..index]);
			partial_result = partial_result
				.evaluate_partial_high(query.to_ref())
				.unwrap();
			index -= split_vars;
		}
		let multilin_query = multilinear_query::<P>(&q[..index]);
		partial_result.evaluate(multilin_query.to_ref()).unwrap()
	}

	#[test]
	fn test_evaluate_split_is_correct() {
		let mut rng = StdRng::seed_from_u64(0);
		let evals = repeat_with(|| Field::random(&mut rng))
			.take(256)
			.collect::<Vec<F>>();
		let poly = MultilinearExtension::from_values(evals).unwrap();
		let q = repeat_with(|| Field::random(&mut rng))
			.take(8)
			.collect::<Vec<F>>();
		let multilin_query = multilinear_query::<P>(&q);
		let result1 = poly.evaluate(multilin_query.to_ref()).unwrap();
		let result2 = evaluate_split(poly, &q, &[2, 3, 3]);
		assert_eq!(result1, result2);
	}

	#[test]
	fn test_evaluate_partial_high_packed() {
		let mut rng = StdRng::seed_from_u64(0);
		let evals = repeat_with(|| P::random(&mut rng))
			.take(256 >> P::LOG_WIDTH)
			.collect::<Vec<_>>();
		let poly = MultilinearExtension::from_values(evals).unwrap();
		let q = repeat_with(|| Field::random(&mut rng))
			.take(8)
			.collect::<Vec<BinaryField128b>>();
		let multilin_query = multilinear_query::<BinaryField128b>(&q);

		let expected = poly.evaluate(multilin_query.to_ref()).unwrap();

		// The final split has a number of coefficients less than the packing width
		let query_hi = multilinear_query::<BinaryField128b>(&q[1..]);
		let partial_eval = poly.evaluate_partial_high(query_hi.to_ref()).unwrap();
		assert!(partial_eval.n_vars() < P::LOG_WIDTH);

		let query_lo = multilinear_query::<BinaryField128b>(&q[..1]);
		let eval = partial_eval.evaluate(query_lo.to_ref()).unwrap();
		assert_eq!(eval, expected);
	}

	#[test]
	fn test_evaluate_partial_low_high_smaller_than_packed_width() {
		type P = PackedBinaryField16x8b;

		type F = BinaryField8b;

		let n_vars = 3;

		let mut rng = StdRng::seed_from_u64(0);

		let values = repeat_with(|| Field::random(&mut rng))
			.take(1 << n_vars)
			.collect::<Vec<F>>();

		let q = repeat_with(|| Field::random(&mut rng))
			.take(n_vars)
			.collect::<Vec<F>>();

		let query = multilinear_query::<P>(&q);

		let packed = P::from_scalars(values.clone());
		let me = MultilinearExtension::new(n_vars, vec![packed]).unwrap();

		let eval = me.evaluate(&query).unwrap();

		let query_low = multilinear_query::<P>(&q[..n_vars - 1]);
		let query_high = multilinear_query::<P>(&q[n_vars - 1..]);

		let eval_l_h = me
			.evaluate_partial_high(&query_high)
			.unwrap()
			.evaluate_partial_low(&query_low)
			.unwrap()
			.evals()[0]
			.get(0);

		assert_eq!(eval, eval_l_h);
	}

	#[test]
	fn test_evaluate_on_hypercube_small_than_packed_width() {
		type P = PackedBinaryField16x8b;

		type F = BinaryField8b;

		let n_vars = 3;

		let mut rng = StdRng::seed_from_u64(0);

		let values = repeat_with(|| Field::random(&mut rng))
			.take(1 << n_vars)
			.collect::<Vec<F>>();

		let packed = P::from_scalars(values.clone());

		let me = MultilinearExtension::new(n_vars, vec![packed]).unwrap();

		assert_eq!(me.evaluate_on_hypercube(1).unwrap(), values[1]);

		assert!(me.evaluate_on_hypercube(1 << n_vars).is_err());
	}

	#[test]
	fn test_evaluate_partial_high_low_evaluate_consistent() {
		let mut rng = StdRng::seed_from_u64(0);
		let values: Vec<_> = repeat_with(|| PackedBinaryField4x32b::random(&mut rng))
			.take(1 << 8)
			.collect();

		let me = MultilinearExtension::from_values(values).unwrap();

		let q = repeat_with(|| <BinaryField32b as PackedField>::random(&mut rng))
			.take(me.n_vars())
			.collect::<Vec<_>>();

		let query = multilinear_query(&q);

		let eval = me
			.evaluate::<<PackedBinaryField4x32b as PackedField>::Scalar, PackedBinaryField4x32b>(
				query.to_ref(),
			)
			.unwrap();

		assert_eq!(
			me.evaluate_partial_low::<PackedBinaryField4x32b>(query.to_ref())
				.unwrap()
				.evals[0]
				.get(0),
			eval
		);
		assert_eq!(
			me.evaluate_partial_high::<PackedBinaryField4x32b>(query.to_ref())
				.unwrap()
				.evals[0]
				.get(0),
			eval
		);
	}
}