binius_math/
multilinear_query.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2023-2025 Irreducible Inc.

use std::{cmp::max, ops::DerefMut};

use binius_field::{Field, PackedField};
use binius_utils::bail;
use bytemuck::zeroed_vec;

use crate::{eq_ind_partial_eval, tensor_prod_eq_ind, Error};

/// Tensor product expansion of sumcheck round challenges.
///
/// Stores the tensor product expansion $\bigotimes_{i = 0}^{n - 1} (1 - r_i, r_i)$
/// when `round()` is `n` for the sequence of sumcheck challenges $(r_0, ..., r_{n-1})$.
/// The tensor product can be updated with a new round challenge in linear time.
/// This is used in the first several rounds of the sumcheck prover for small-field polynomials,
/// before it becomes more efficient to switch over to the method that store folded multilinears.
#[derive(Debug)]
pub struct MultilinearQuery<P, Data = Vec<P>>
where
	P: PackedField,
	Data: DerefMut<Target = [P]>,
{
	n_vars: usize,
	expanded_query: Data,
}

/// Wraps `MultilinearQuery` to hide `Data` from the users.
#[derive(Debug, Clone, Copy)]
pub struct MultilinearQueryRef<'a, P: PackedField> {
	n_vars: usize,
	expanded_query: &'a [P],
}

impl<'a, P: PackedField, Data: DerefMut<Target = [P]>> From<&'a MultilinearQuery<P, Data>>
	for MultilinearQueryRef<'a, P>
{
	fn from(query: &'a MultilinearQuery<P, Data>) -> Self {
		MultilinearQueryRef::new(query)
	}
}

impl<'a, P: PackedField> MultilinearQueryRef<'a, P> {
	pub fn new<Data: DerefMut<Target = [P]>>(query: &'a MultilinearQuery<P, Data>) -> Self {
		Self {
			n_vars: query.n_vars,
			expanded_query: &query.expanded_query,
		}
	}

	pub fn n_vars(&self) -> usize {
		self.n_vars
	}

	/// Returns the tensor product expansion of the query
	///
	/// If the number of query variables is less than the packing width, return a single packed element.
	pub fn expansion(&self) -> &[P] {
		let expanded_query_len = 1 << self.n_vars.saturating_sub(P::LOG_WIDTH);
		&self.expanded_query[0..expanded_query_len]
	}
}

impl<P: PackedField> MultilinearQuery<P, Vec<P>> {
	pub fn with_capacity(max_query_vars: usize) -> Self {
		let len = 1 << max_query_vars.saturating_sub(P::LOG_WIDTH);
		let mut expanded_query = zeroed_vec::<P>(len);
		expanded_query[0].set(0, P::Scalar::ONE);
		Self {
			expanded_query,
			n_vars: 0,
		}
	}

	pub fn expand(query: &[P::Scalar]) -> Self {
		let expanded_query = eq_ind_partial_eval::<P>(query);
		Self {
			expanded_query,
			n_vars: query.len(),
		}
	}
}

impl<P: PackedField, Data: DerefMut<Target = [P]>> MultilinearQuery<P, Data> {
	pub fn with_expansion(n_vars: usize, expanded_query: Data) -> Result<Self, Error> {
		let expected_len = 1 << n_vars.saturating_sub(P::LOG_WIDTH);
		if expanded_query.len() < expected_len {
			bail!(Error::IncorrectArgumentLength {
				arg: "expanded_query".to_string(),
				expected: expected_len,
			});
		}
		Ok(Self {
			n_vars,
			expanded_query,
		})
	}

	pub fn n_vars(&self) -> usize {
		self.n_vars
	}

	/// Returns the tensor product expansion of the query
	///
	/// If the number of query variables is less than the packing width, return a single packed element.
	pub fn expansion(&self) -> &[P] {
		let expanded_query_len = 1 << self.n_vars.saturating_sub(P::LOG_WIDTH);
		&self.expanded_query[0..expanded_query_len]
	}

	// REVIEW: this method is a temporary hack to allow the
	// construction of a "multilinear query" which contains Lagrange
	// coefficient evaluations in UnivariateZerocheck::fold_univariate_round
	pub fn expansion_mut(&mut self) -> &mut [P] {
		let expanded_query_len = 1 << self.n_vars.saturating_sub(P::LOG_WIDTH);
		&mut self.expanded_query[0..expanded_query_len]
	}

	pub fn into_expansion(self) -> Data {
		self.expanded_query
	}

	pub fn update(mut self, extra_query_coordinates: &[P::Scalar]) -> Result<Self, Error> {
		let old_n_vars = self.n_vars;
		let new_n_vars = old_n_vars + extra_query_coordinates.len();
		let new_length = max((1 << new_n_vars) / P::WIDTH, 1);
		if new_length > self.expanded_query.len() {
			bail!(Error::MultilinearQueryFull {
				max_query_vars: old_n_vars,
			});
		}
		tensor_prod_eq_ind(
			old_n_vars,
			&mut self.expanded_query[..new_length],
			extra_query_coordinates,
		)?;

		Ok(Self {
			n_vars: new_n_vars,
			expanded_query: self.expanded_query,
		})
	}

	pub fn to_ref(&self) -> MultilinearQueryRef<P> {
		self.into()
	}
}

#[cfg(test)]
mod tests {
	use binius_field::{Field, PackedField};
	use binius_utils::felts;

	use super::*;
	use crate::tensor_prod_eq_ind;

	fn tensor_prod<P: PackedField>(p: &[P::Scalar]) -> Vec<P> {
		let mut result = vec![P::default(); 1 << p.len().saturating_sub(P::LOG_WIDTH)];
		result[0] = P::set_single(P::Scalar::ONE);
		tensor_prod_eq_ind(0, &mut result, p).unwrap();
		result
	}

	macro_rules! expand_query {
		($f:ident[$($elem:expr),* $(,)?], Packing=$p:ident) => {
			binius_field::PackedField::iter_slice(
				MultilinearQuery::<$p, _>::with_expansion(
					{
						let elems: &[$f] = &[$($f::new($elem)),*];
						elems.len()
					},
					tensor_prod(&[$($f::new($elem)),*])
				)
				.unwrap()
				.expansion(),
			).collect::<Vec<_>>()
		};
	}

	#[test]
	fn test_query_no_packing_32b() {
		use binius_field::BinaryField32b;

		assert_eq!(
			expand_query!(BinaryField32b[], Packing = BinaryField32b),
			felts!(BinaryField32b[1])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2], Packing = BinaryField32b),
			felts!(BinaryField32b[3, 2])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2], Packing = BinaryField32b),
			felts!(BinaryField32b[2, 1, 1, 3])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2, 2], Packing = BinaryField32b),
			felts!(BinaryField32b[1, 3, 3, 2, 3, 2, 2, 1])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2, 2, 2], Packing = BinaryField32b),
			felts!(BinaryField32b[3, 2, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 3, 3, 2])
		);
	}

	#[test]
	fn test_query_packing_4x32b() {
		use binius_field::{BinaryField32b, PackedBinaryField4x32b};
		assert_eq!(
			expand_query!(BinaryField32b[], Packing = PackedBinaryField4x32b),
			felts!(BinaryField32b[1, 0, 0, 0])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2], Packing = PackedBinaryField4x32b),
			felts!(BinaryField32b[2, 1, 1, 3])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2], Packing = PackedBinaryField4x32b),
			felts!(BinaryField32b[3, 2, 0, 0])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2, 2], Packing = PackedBinaryField4x32b),
			felts!(BinaryField32b[1, 3, 3, 2, 3, 2, 2, 1])
		);
		assert_eq!(
			expand_query!(BinaryField32b[2, 2, 2, 2], Packing = PackedBinaryField4x32b),
			felts!(BinaryField32b[3, 2, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 3, 3, 2])
		);
	}

	#[test]
	fn test_query_packing_8x16b() {
		use binius_field::{BinaryField16b, PackedBinaryField8x16b};
		assert_eq!(
			expand_query!(BinaryField16b[], Packing = PackedBinaryField8x16b),
			felts!(BinaryField16b[1, 0, 0, 0, 0, 0, 0, 0])
		);
		assert_eq!(
			expand_query!(BinaryField16b[2], Packing = PackedBinaryField8x16b),
			felts!(BinaryField16b[3, 2, 0, 0, 0, 0, 0, 0])
		);
		assert_eq!(
			expand_query!(BinaryField16b[2, 2], Packing = PackedBinaryField8x16b),
			felts!(BinaryField16b[2, 1, 1, 3, 0, 0, 0, 0])
		);
		assert_eq!(
			expand_query!(BinaryField16b[2, 2, 2], Packing = PackedBinaryField8x16b),
			felts!(BinaryField16b[1, 3, 3, 2, 3, 2, 2, 1])
		);
		assert_eq!(
			expand_query!(BinaryField16b[2, 2, 2, 2], Packing = PackedBinaryField8x16b),
			felts!(BinaryField16b[3, 2, 2, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 3, 3, 2])
		);
	}
}