binius_math/piecewise_multilinear.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Copyright 2024-2025 Irreducible Inc.
use binius_field::Field;
use tracing::instrument;
use crate::{extrapolate_line_scalar, Error};
/// Evaluate a piecewise multilinear polynomial at a point, given the evaluations of the pieces.
///
/// A piecewise multilinear is defined by a sequence of multilinear polynomials, ordered from
/// most number of variables to least. We define it over a boolean hypercube by identifying
/// the smallest hypercube larger than the total number of hypercube evaluations of all the pieces,
/// then concatenating the evaluations, flattened into vectors in little-endian order. The
/// evaluation vector is right-padded with zeros up to the hypercube size of the containing cube.
/// Equivalently, we can view the piecewise multilinear as defined by an inductive linear
/// interpolation of pairs of polynomials.
///
/// This function takes a description of a piecewise multilinear polynomial and the evaluations
/// of the pieces at prefixes of the given point, then evaluates the concatenated multilinear at
/// the point.
///
/// ## Arguments
///
/// * `point` - the evaluation point. The length specifies the number of variables in the
/// concatenated multilinear.
/// * `n_pieces_by_vars` - the number of multilinear pieces, indexed by the number of variables.
/// Entry at index `i` is the number of multilinears with `i` variables. The sum of
/// `n_pieces_by_vars[i] * 2^i` for all indices `i` must be at most `2^n`, where `n` is the
/// length of `point.`.
/// * `piece_evals` - the evaluations of the multilinear pieces at the corresponding prefixes of
/// `point`. The length must be equal to the sum of the values in `n_pieces_by_vars`. This must
/// be in the *same order* as the corresponding multilinears are implicitly concatenated.
///
/// ## Example
///
/// Suppose we have three multilinear functions $f_0$, $f_1$, and $f_2$, which have $2$, $2$, and
/// $1$ variables respectively. There exists a unique $4$-variate multilinear function $\tilde{f}$,
/// which is defined by concatenating the evaluations of $f_0$, $f_1$, and $f_2$ along their
/// respective defining Boolean hypercubes and then zero-padding. (I.e., we simply decree that the
/// resulting list of length 16 is the ordered list of evaluations of a multilinear $\tilde{f}$
/// on $\mathcal B_4$.) We wish to evaluate $\tilde{f}$ at the point $(r_0, r_1, r_2, r_3)$,
/// and we are given the evaluations of $v_0:=f_0(r_0,r_1)$, $v_1:=f_1(r_0,r_1)$, and
/// $v_2:=f_2(r_0)$. In this situation, we have the following:
/// `n_pieces_by_vars` is `[0, 1, 2]`, and `piece_evals` is `[v_0, v_1, v_2]`.
#[instrument(skip_all)]
pub fn evaluate_piecewise_multilinear<F: Field>(
point: &[F],
n_pieces_by_vars: &[usize],
piece_evals: &mut [F],
) -> Result<F, Error> {
// dimension of the big hypercube
let total_n_vars = point.len();
// number of multilinears
let num_polys = n_pieces_by_vars.iter().sum();
// total number of coefficients in all of the multilinears.
let total_length: usize = n_pieces_by_vars
.iter()
.enumerate()
.map(|(i, &n)| n << i)
.sum();
if total_length > 1 << total_n_vars {
return Err(Error::PiecewiseMultilinearTooLong {
total_length,
total_n_vars,
});
}
if piece_evals.len() != num_polys {
return Err(Error::PiecewiseMultilinearIncompatibleEvals {
expected: num_polys,
actual: piece_evals.len(),
});
}
// The logic is that we can iteratively compute the "root claim" via a "folding" procedure,
// reading from right to left.
// To demonstrate what is happening, suppose we have 3 multilinears f_0, f_1, f_2, of lengths
// 2, 2, 1 respectively.
// We want to evaluate the concatenation at point [r_0, r_1, r_2, r_3]. We are given the
// evaluations:
// v_0 := f_0(r_0, r_1), v_1 := f_1(r_0, r_1), and v_2 := f_2(r_0).
// we first replace v_2 with (1-r_1)*v_2 + r_1 * 0, which is implicitly the evaluation of the
// 2-variate multilinear corresponding to f_2(evals)||0, 0 at the point (r_0, r_1).
// we then replace v_0 with (1-r_2)*v_0 + r_2 * v_1 and v_1 with (1-r_2)*v_1 + r_2 * 0.
// this list of length 2 represents the evaluation claims of the trivariate multilinears
// corresponding to:
// 1. f_0(evals)||f_1(evals); and
// 2. f_2(evals)||0, 0, 0, 0
// at the point (r_0, r_1, r_2).
// finally, we fold our final list of length 2 via r_3 to obtain the root claim.
let mut index = piece_evals.len();
let mut n_to_fold = 0;
for (i, &point_i) in point.iter().enumerate() {
n_to_fold += n_pieces_by_vars.get(i).copied().unwrap_or(0);
fold_segment(&mut piece_evals[index - n_to_fold..index], point_i);
let n_folded_out = n_to_fold / 2;
index -= n_folded_out;
n_to_fold -= n_folded_out;
}
Ok(piece_evals[0])
}
/// Folds a sequence of pairs of field elements by linear extrapolation at a given point.
///
/// Given a list $[a_0,\ldots, a_{n-1}]$ and a parameter $r$, mutate to the list
/// $[a_0(1-r) + a_1r, a_2(1-r) + a_3r, \ldots, 0, \ldots]$. If $n$ is odd, then the last
/// potentially non-zero element is $a_{n-1}(1-r)$, at index $(n-1)/2$.
fn fold_segment<F: Field>(segment: &mut [F], z: F) {
let n_full_pairs = segment.len() / 2;
for i in 0..n_full_pairs {
segment[i] = extrapolate_line_scalar(segment[2 * i], segment[2 * i + 1], z);
}
if segment.len() % 2 == 1 {
let i = segment.len() / 2;
segment[i] = extrapolate_line_scalar(segment[2 * i], F::ZERO, z);
}
}
#[cfg(test)]
mod tests {
use std::iter::repeat_with;
use binius_field::BinaryField32b;
use binius_utils::checked_arithmetics::{log2_ceil_usize, log2_strict_usize};
use rand::{prelude::StdRng, SeedableRng};
use super::*;
use crate::{MultilinearExtension, MultilinearQuery};
fn test_piecewise_multilinear(number_of_variables: &[usize]) {
type F = BinaryField32b;
assert!(
number_of_variables.windows(2).all(|w| w[0] >= w[1]),
"Number of variables must be sorted in non-increasing order"
);
let mut n_pieces_by_vars = vec![0; number_of_variables[0] + 1];
for &n_vars in number_of_variables {
n_pieces_by_vars[n_vars] += 1;
}
let mut rng = StdRng::seed_from_u64(0);
// build random multilinears with the given number of variables.
let mut multilinear_coefficients: Vec<Vec<F>> = vec![];
for &n_vars in number_of_variables {
multilinear_coefficients.push(gen_random_multilinear(n_vars, &mut rng));
}
let total_num_coeffs: usize = number_of_variables.iter().map(|&n| 1 << n).sum();
let total_number_of_variables = log2_ceil_usize(total_num_coeffs);
let zero_padding_length = (1 << total_number_of_variables) - total_num_coeffs;
// zero-padded concatenated multilinear
let concatenated_multilinear_coeffs = multilinear_coefficients
.iter()
.flat_map(|coeffs| coeffs.iter())
.cloned()
.chain(repeat_with(|| F::ZERO).take(zero_padding_length))
.collect::<Vec<_>>();
let concatenated_multilinear = MultilinearExtension::<F, Vec<F>>::new(
total_number_of_variables,
concatenated_multilinear_coeffs.clone(),
)
.unwrap();
let eval_point = repeat_with(|| <F as Field>::random(&mut rng))
.take(total_number_of_variables)
.collect::<Vec<_>>();
let mlq_eval_point = MultilinearQuery::<F>::expand(&eval_point);
// compute individual claims.
let mut piece_evals =
eval_multilinears_at_common_prefix(&multilinear_coefficients, &eval_point);
// compute claim of concatenated polynomial directly.
let concatenate_and_evaluate = concatenated_multilinear.evaluate(&mlq_eval_point).unwrap();
// compute claim of concatenated polynomial via `evaluation_piecewise_multilinear`
let compute_via_piecewise = evaluate_piecewise_multilinear(
eval_point.as_slice(),
&n_pieces_by_vars,
&mut piece_evals,
)
.unwrap();
assert_eq!(concatenate_and_evaluate, compute_via_piecewise);
}
#[test]
fn test_piecewise_multilinear_4_4() {
test_piecewise_multilinear(&[4, 4]);
}
#[test]
fn test_piecewise_multilinear_5_3_2() {
test_piecewise_multilinear(&[5, 3, 2]);
}
#[test]
fn test_piecewise_multilinear_5_5_3_3_2_2_2() {
test_piecewise_multilinear(&[5, 5, 3, 3, 2, 2, 2]);
}
#[test]
fn test_piecewise_multilinear_2_2_1() {
test_piecewise_multilinear(&[2, 2, 1]);
}
#[test]
fn test_piecewise_multilinear_3_1_0_0_0() {
test_piecewise_multilinear(&[3, 1, 0, 0, 0]);
}
fn gen_random_multilinear<F: Field>(n_vars: usize, mut rng: &mut StdRng) -> Vec<F> {
repeat_with(|| F::random(&mut rng))
.take(1 << n_vars)
.collect::<Vec<_>>()
}
fn eval_multilinears_at_common_prefix<F: Field>(
multilinears: &[Vec<F>],
prefix: &[F],
) -> Vec<F> {
let mut result = Vec::new();
for multilinear_coeffs in multilinears {
let log_len = log2_strict_usize(multilinear_coeffs.len());
let multilinear =
MultilinearExtension::<F, Vec<F>>::new(log_len, multilinear_coeffs.clone())
.unwrap();
let mlq_eval_point = MultilinearQuery::<F>::expand(&prefix[..log_len]);
let eval = multilinear.evaluate(&mlq_eval_point).unwrap();
result.push(eval);
}
result
}
}