use auto_impl::auto_impl;
use binius_field::{
packed::mul_by_subfield_scalar, BinaryField, ExtensionField, Field, PackedExtension,
PackedField,
};
use binius_utils::bail;
use super::{binary_subspace::BinarySubspace, error::Error};
use crate::Matrix;
#[derive(Debug, Clone)]
pub struct EvaluationDomain<F: Field> {
points: Vec<F>,
weights: Vec<F>,
}
#[derive(Debug, Clone)]
pub struct InterpolationDomain<F: Field> {
evaluation_domain: EvaluationDomain<F>,
interpolation_matrix: Matrix<F>,
}
#[auto_impl(&)]
pub trait EvaluationDomainFactory<DomainField: Field>: Clone + Sync {
fn create(&self, size: usize) -> Result<EvaluationDomain<DomainField>, Error>;
}
#[derive(Default, Clone)]
pub struct DefaultEvaluationDomainFactory<F: BinaryField> {
subspace: BinarySubspace<F>,
}
#[derive(Default, Clone)]
pub struct IsomorphicEvaluationDomainFactory<F: BinaryField> {
subspace: BinarySubspace<F>,
}
impl<F: BinaryField> EvaluationDomainFactory<F> for DefaultEvaluationDomainFactory<F> {
fn create(&self, size: usize) -> Result<EvaluationDomain<F>, Error> {
EvaluationDomain::from_points(make_evaluation_points(&self.subspace, size)?)
}
}
impl<FSrc: BinaryField, FTgt: BinaryField> EvaluationDomainFactory<FTgt>
for IsomorphicEvaluationDomainFactory<FSrc>
where
FSrc: BinaryField,
FTgt: Field + From<FSrc>,
{
fn create(&self, size: usize) -> Result<EvaluationDomain<FTgt>, Error> {
let points = make_evaluation_points(&self.subspace, size)?;
EvaluationDomain::from_points(points.into_iter().map(Into::into).collect())
}
}
fn make_evaluation_points<F: BinaryField>(
subspace: &BinarySubspace<F>,
size: usize,
) -> Result<Vec<F>, Error> {
let points = subspace.iter().take(size).collect::<Vec<F>>();
if points.len() != size {
bail!(Error::DomainSizeTooLarge);
}
Ok(points)
}
impl<F: Field> From<EvaluationDomain<F>> for InterpolationDomain<F> {
fn from(evaluation_domain: EvaluationDomain<F>) -> InterpolationDomain<F> {
let n = evaluation_domain.size();
let evaluation_matrix = vandermonde(evaluation_domain.points());
let mut interpolation_matrix = Matrix::zeros(n, n);
evaluation_matrix
.inverse_into(&mut interpolation_matrix)
.expect(
"matrix is square; \
there are no duplicate points because that would have been caught when computing \
weights; \
matrix is non-singular because it is Vandermonde with no duplicate points",
);
InterpolationDomain {
evaluation_domain,
interpolation_matrix,
}
}
}
impl<F: Field> EvaluationDomain<F> {
pub fn from_points(points: Vec<F>) -> Result<Self, Error> {
let weights = compute_barycentric_weights(&points)?;
Ok(Self { points, weights })
}
pub fn size(&self) -> usize {
self.points.len()
}
pub fn points(&self) -> &[F] {
self.points.as_slice()
}
pub fn lagrange_evals<FE: ExtensionField<F>>(&self, x: FE) -> Vec<FE> {
let num_evals = self.size();
let mut result: Vec<FE> = vec![FE::ONE; num_evals];
for i in (1..num_evals).rev() {
result[i - 1] = result[i] * (x - self.points[i]);
}
let mut prefix = FE::ONE;
for ((r, &point), &weight) in result.iter_mut().zip(&self.points).zip(&self.weights) {
*r *= prefix * weight;
prefix *= x - point;
}
result
}
pub fn extrapolate<PE>(&self, values: &[PE], x: PE::Scalar) -> Result<PE, Error>
where
PE: PackedField<Scalar: ExtensionField<F>>,
{
let lagrange_eval_results = self.lagrange_evals(x);
let n = self.size();
if values.len() != n {
bail!(Error::ExtrapolateNumberOfEvaluations);
}
let result = lagrange_eval_results
.into_iter()
.zip(values)
.map(|(evaluation, &value)| value * evaluation)
.sum::<PE>();
Ok(result)
}
}
impl<F: Field> InterpolationDomain<F> {
pub fn size(&self) -> usize {
self.evaluation_domain.size()
}
pub fn points(&self) -> &[F] {
self.evaluation_domain.points()
}
pub fn extrapolate<PE>(&self, values: &[PE], x: PE::Scalar) -> Result<PE, Error>
where
PE: PackedExtension<F, Scalar: ExtensionField<F>>,
{
self.evaluation_domain.extrapolate(values, x)
}
pub fn interpolate<FE: ExtensionField<F>>(&self, values: &[FE]) -> Result<Vec<FE>, Error> {
let n = self.evaluation_domain.size();
if values.len() != n {
bail!(Error::ExtrapolateNumberOfEvaluations);
}
let mut coeffs = vec![FE::ZERO; values.len()];
self.interpolation_matrix.mul_vec_into(values, &mut coeffs);
Ok(coeffs)
}
}
#[inline]
pub fn extrapolate_line<P, FS>(x0: P, x1: P, z: FS) -> P
where
P: PackedExtension<FS, Scalar: ExtensionField<FS>>,
FS: Field,
{
x0 + mul_by_subfield_scalar(x1 - x0, z)
}
#[inline]
pub fn extrapolate_lines<P>(x0: P, x1: P, z: P) -> P
where
P: PackedField,
{
x0 + (x1 - x0) * z
}
#[inline]
pub fn extrapolate_line_scalar<F, FS>(x0: F, x1: F, z: FS) -> F
where
F: ExtensionField<FS>,
FS: Field,
{
x0 + (x1 - x0) * z
}
pub fn evaluate_univariate<F: Field>(coeffs: &[F], x: F) -> F {
let mut rev_coeffs = coeffs.iter().copied().rev();
let last_coeff = rev_coeffs.next().unwrap_or(F::ZERO);
rev_coeffs.fold(last_coeff, |eval, coeff| eval * x + coeff)
}
fn compute_barycentric_weights<F: Field>(points: &[F]) -> Result<Vec<F>, Error> {
let n = points.len();
(0..n)
.map(|i| {
let product = (0..n)
.filter(|&j| j != i)
.map(|j| points[i] - points[j])
.product::<F>();
product.invert().ok_or(Error::DuplicateDomainPoint)
})
.collect()
}
fn vandermonde<F: Field>(xs: &[F]) -> Matrix<F> {
let n = xs.len();
let mut mat = Matrix::zeros(n, n);
for (i, x_i) in xs.iter().copied().enumerate() {
let mut acc = F::ONE;
mat[(i, 0)] = acc;
for j in 1..n {
acc *= x_i;
mat[(i, j)] = acc;
}
}
mat
}
#[cfg(test)]
mod tests {
use std::{iter::repeat_with, slice};
use assert_matches::assert_matches;
use binius_field::{
util::inner_product_unchecked, AESTowerField32b, BinaryField32b, BinaryField8b,
};
use proptest::{collection::vec, proptest};
use rand::{rngs::StdRng, SeedableRng};
use super::*;
fn evaluate_univariate_naive<F: Field>(coeffs: &[F], x: F) -> F {
coeffs
.iter()
.enumerate()
.map(|(i, &coeff)| coeff * x.pow(slice::from_ref(&(i as u64))))
.sum()
}
#[test]
fn test_new_domain() {
let domain_factory = DefaultEvaluationDomainFactory::<BinaryField8b>::default();
assert_eq!(
domain_factory.create(3).unwrap().points,
&[
BinaryField8b::new(0),
BinaryField8b::new(1),
BinaryField8b::new(2)
]
);
}
#[test]
fn test_domain_factory_binary_field() {
let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
let iso_domain_factory = IsomorphicEvaluationDomainFactory::<BinaryField32b>::default();
let domain_1: EvaluationDomain<BinaryField32b> = default_domain_factory.create(10).unwrap();
let domain_2: EvaluationDomain<BinaryField32b> = iso_domain_factory.create(10).unwrap();
assert_eq!(domain_1.points, domain_2.points);
}
#[test]
fn test_domain_factory_aes() {
let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
let iso_domain_factory = IsomorphicEvaluationDomainFactory::<BinaryField32b>::default();
let domain_1: EvaluationDomain<BinaryField32b> = default_domain_factory.create(10).unwrap();
let domain_2: EvaluationDomain<AESTowerField32b> = iso_domain_factory.create(10).unwrap();
assert_eq!(
domain_1
.points
.into_iter()
.map(AESTowerField32b::from)
.collect::<Vec<_>>(),
domain_2.points
);
}
#[test]
fn test_new_oversized_domain() {
let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField8b>::default();
assert_matches!(default_domain_factory.create(300), Err(Error::DomainSizeTooLarge));
}
#[test]
fn test_evaluate_univariate() {
let mut rng = StdRng::seed_from_u64(0);
let coeffs = repeat_with(|| <BinaryField8b as Field>::random(&mut rng))
.take(6)
.collect::<Vec<_>>();
let x = <BinaryField8b as Field>::random(&mut rng);
assert_eq!(evaluate_univariate(&coeffs, x), evaluate_univariate_naive(&coeffs, x));
}
#[test]
fn test_evaluate_univariate_no_coeffs() {
let mut rng = StdRng::seed_from_u64(0);
let x = <BinaryField32b as Field>::random(&mut rng);
assert_eq!(evaluate_univariate(&[], x), BinaryField32b::ZERO);
}
#[test]
fn test_random_extrapolate() {
let mut rng = StdRng::seed_from_u64(0);
let degree = 6;
let domain = EvaluationDomain::from_points(
repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
.take(degree + 1)
.collect(),
)
.unwrap();
let coeffs = repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
.take(degree + 1)
.collect::<Vec<_>>();
let values = domain
.points()
.iter()
.map(|&x| evaluate_univariate(&coeffs, x))
.collect::<Vec<_>>();
let x = <BinaryField32b as Field>::random(&mut rng);
let expected_y = evaluate_univariate(&coeffs, x);
assert_eq!(domain.extrapolate(&values, x).unwrap(), expected_y);
}
#[test]
fn test_interpolation() {
let mut rng = StdRng::seed_from_u64(0);
let degree = 6;
let domain = EvaluationDomain::from_points(
repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
.take(degree + 1)
.collect(),
)
.unwrap();
let coeffs = repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
.take(degree + 1)
.collect::<Vec<_>>();
let values = domain
.points()
.iter()
.map(|&x| evaluate_univariate(&coeffs, x))
.collect::<Vec<_>>();
let interpolated = InterpolationDomain::from(domain)
.interpolate(&values)
.unwrap();
assert_eq!(interpolated, coeffs);
}
proptest! {
#[test]
fn test_extrapolate_line(x0 in 0u32.., x1 in 0u32.., z in 0u8..) {
let x0 = BinaryField32b::from(x0);
let x1 = BinaryField32b::from(x1);
let z = BinaryField8b::from(z);
assert_eq!(extrapolate_line(x0, x1, z), x0 + (x1 - x0) * z);
assert_eq!(extrapolate_line_scalar(x0, x1, z), x0 + (x1 - x0) * z);
}
#[test]
fn test_lagrange_evals(values in vec(0u32.., 0..100), z in 0u32..) {
let field_values = values.into_iter().map(BinaryField32b::from).collect::<Vec<_>>();
let factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
let evaluation_domain = factory.create(field_values.len()).unwrap();
let z = BinaryField32b::new(z);
let extrapolated = evaluation_domain.extrapolate(field_values.as_slice(), z).unwrap();
let lagrange_coeffs = evaluation_domain.lagrange_evals(z);
let lagrange_eval = inner_product_unchecked(lagrange_coeffs.into_iter(), field_values.into_iter());
assert_eq!(lagrange_eval, extrapolated);
}
}
}