binius_math/
univariate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// Copyright 2023-2025 Irreducible Inc.
// Copyright (c) 2022 The Plonky2 Authors

use auto_impl::auto_impl;
use binius_field::{
	packed::mul_by_subfield_scalar, BinaryField, ExtensionField, Field, PackedExtension,
	PackedField,
};
use binius_utils::bail;

use super::{binary_subspace::BinarySubspace, error::Error};
use crate::Matrix;

/// A domain that univariate polynomials may be evaluated on.
///
/// An evaluation domain of size d + 1 along with polynomial values on that domain are sufficient
/// to reconstruct a degree <= d. This struct supports Barycentric extrapolation.
#[derive(Debug, Clone)]
pub struct EvaluationDomain<F: Field> {
	points: Vec<F>,
	weights: Vec<F>,
}

/// An extended version of `EvaluationDomain` that supports interpolation to monomial form. Takes
/// longer to construct due to Vandermonde inversion, which has cubic complexity.
#[derive(Debug, Clone)]
pub struct InterpolationDomain<F: Field> {
	evaluation_domain: EvaluationDomain<F>,
	interpolation_matrix: Matrix<F>,
}

/// Wraps type information to enable instantiating EvaluationDomains.
#[auto_impl(&)]
pub trait EvaluationDomainFactory<DomainField: Field>: Clone + Sync {
	/// Instantiates an EvaluationDomain from a set of points isomorphic to direct
	/// lexicographic successors of zero in Fan-Paar tower
	fn create(&self, size: usize) -> Result<EvaluationDomain<DomainField>, Error>;
}

#[derive(Default, Clone)]
pub struct DefaultEvaluationDomainFactory<F: BinaryField> {
	subspace: BinarySubspace<F>,
}

#[derive(Default, Clone)]
pub struct IsomorphicEvaluationDomainFactory<F: BinaryField> {
	subspace: BinarySubspace<F>,
}

impl<F: BinaryField> EvaluationDomainFactory<F> for DefaultEvaluationDomainFactory<F> {
	fn create(&self, size: usize) -> Result<EvaluationDomain<F>, Error> {
		EvaluationDomain::from_points(make_evaluation_points(&self.subspace, size)?)
	}
}

impl<FSrc: BinaryField, FTgt: BinaryField> EvaluationDomainFactory<FTgt>
	for IsomorphicEvaluationDomainFactory<FSrc>
where
	FSrc: BinaryField,
	FTgt: Field + From<FSrc>,
{
	fn create(&self, size: usize) -> Result<EvaluationDomain<FTgt>, Error> {
		let points = make_evaluation_points(&self.subspace, size)?;
		EvaluationDomain::from_points(points.into_iter().map(Into::into).collect())
	}
}

fn make_evaluation_points<F: BinaryField>(
	subspace: &BinarySubspace<F>,
	size: usize,
) -> Result<Vec<F>, Error> {
	let points = subspace.iter().take(size).collect::<Vec<F>>();
	if points.len() != size {
		bail!(Error::DomainSizeTooLarge);
	}
	Ok(points)
}

impl<F: Field> From<EvaluationDomain<F>> for InterpolationDomain<F> {
	fn from(evaluation_domain: EvaluationDomain<F>) -> InterpolationDomain<F> {
		let n = evaluation_domain.size();
		let evaluation_matrix = vandermonde(evaluation_domain.points());
		let mut interpolation_matrix = Matrix::zeros(n, n);
		evaluation_matrix
			.inverse_into(&mut interpolation_matrix)
			.expect(
				"matrix is square; \
				there are no duplicate points because that would have been caught when computing \
				weights; \
				matrix is non-singular because it is Vandermonde with no duplicate points",
			);

		InterpolationDomain {
			evaluation_domain,
			interpolation_matrix,
		}
	}
}

impl<F: Field> EvaluationDomain<F> {
	pub fn from_points(points: Vec<F>) -> Result<Self, Error> {
		let weights = compute_barycentric_weights(&points)?;
		Ok(Self { points, weights })
	}

	pub fn size(&self) -> usize {
		self.points.len()
	}

	pub fn points(&self) -> &[F] {
		self.points.as_slice()
	}

	/// Compute a vector of Lagrange polynomial evaluations in $O(N)$ at a given point `x`.
	///
	/// For an evaluation domain consisting of points $\pi_i$ Lagrange polynomials $L_i(x)$
	/// are defined by
	/// $$L_i(x) = \sum_{j \neq i}\frac{x - \pi_j}{\pi_i - \pi_j}$$
	pub fn lagrange_evals<FE: ExtensionField<F>>(&self, x: FE) -> Vec<FE> {
		let num_evals = self.size();

		let mut result: Vec<FE> = vec![FE::ONE; num_evals];

		// Multiply the product suffixes
		for i in (1..num_evals).rev() {
			result[i - 1] = result[i] * (x - self.points[i]);
		}

		let mut prefix = FE::ONE;

		// Multiply the product prefixes and weights
		for ((r, &point), &weight) in result.iter_mut().zip(&self.points).zip(&self.weights) {
			*r *= prefix * weight;
			prefix *= x - point;
		}

		result
	}

	/// Evaluate the unique interpolated polynomial at any point, for a given set of values, in $O(N)$.
	pub fn extrapolate<PE>(&self, values: &[PE], x: PE::Scalar) -> Result<PE, Error>
	where
		PE: PackedField<Scalar: ExtensionField<F>>,
	{
		let lagrange_eval_results = self.lagrange_evals(x);

		let n = self.size();
		if values.len() != n {
			bail!(Error::ExtrapolateNumberOfEvaluations);
		}

		let result = lagrange_eval_results
			.into_iter()
			.zip(values)
			.map(|(evaluation, &value)| value * evaluation)
			.sum::<PE>();

		Ok(result)
	}
}

impl<F: Field> InterpolationDomain<F> {
	pub fn size(&self) -> usize {
		self.evaluation_domain.size()
	}

	pub fn points(&self) -> &[F] {
		self.evaluation_domain.points()
	}

	pub fn extrapolate<PE>(&self, values: &[PE], x: PE::Scalar) -> Result<PE, Error>
	where
		PE: PackedExtension<F, Scalar: ExtensionField<F>>,
	{
		self.evaluation_domain.extrapolate(values, x)
	}

	pub fn interpolate<FE: ExtensionField<F>>(&self, values: &[FE]) -> Result<Vec<FE>, Error> {
		let n = self.evaluation_domain.size();
		if values.len() != n {
			bail!(Error::ExtrapolateNumberOfEvaluations);
		}

		let mut coeffs = vec![FE::ZERO; values.len()];
		self.interpolation_matrix.mul_vec_into(values, &mut coeffs);
		Ok(coeffs)
	}
}

/// Extrapolates lines through a pair of packed fields at a single point from a subfield.
#[inline]
pub fn extrapolate_line<P, FS>(x0: P, x1: P, z: FS) -> P
where
	P: PackedExtension<FS, Scalar: ExtensionField<FS>>,
	FS: Field,
{
	x0 + mul_by_subfield_scalar(x1 - x0, z)
}

/// Extrapolates lines through a pair of packed fields at a packed vector of points.
#[inline]
pub fn extrapolate_lines<P>(x0: P, x1: P, z: P) -> P
where
	P: PackedField,
{
	x0 + (x1 - x0) * z
}

/// Similar methods, but for scalar fields.
#[inline]
pub fn extrapolate_line_scalar<F, FS>(x0: F, x1: F, z: FS) -> F
where
	F: ExtensionField<FS>,
	FS: Field,
{
	x0 + (x1 - x0) * z
}

/// Evaluate a univariate polynomial specified by its monomial coefficients.
pub fn evaluate_univariate<F: Field>(coeffs: &[F], x: F) -> F {
	// Evaluate using Horner's method
	let mut rev_coeffs = coeffs.iter().copied().rev();
	let last_coeff = rev_coeffs.next().unwrap_or(F::ZERO);
	rev_coeffs.fold(last_coeff, |eval, coeff| eval * x + coeff)
}

fn compute_barycentric_weights<F: Field>(points: &[F]) -> Result<Vec<F>, Error> {
	let n = points.len();
	(0..n)
		.map(|i| {
			let product = (0..n)
				.filter(|&j| j != i)
				.map(|j| points[i] - points[j])
				.product::<F>();
			product.invert().ok_or(Error::DuplicateDomainPoint)
		})
		.collect()
}

fn vandermonde<F: Field>(xs: &[F]) -> Matrix<F> {
	let n = xs.len();

	let mut mat = Matrix::zeros(n, n);
	for (i, x_i) in xs.iter().copied().enumerate() {
		let mut acc = F::ONE;
		mat[(i, 0)] = acc;

		for j in 1..n {
			acc *= x_i;
			mat[(i, j)] = acc;
		}
	}
	mat
}

#[cfg(test)]
mod tests {
	use std::{iter::repeat_with, slice};

	use assert_matches::assert_matches;
	use binius_field::{
		util::inner_product_unchecked, AESTowerField32b, BinaryField32b, BinaryField8b,
	};
	use proptest::{collection::vec, proptest};
	use rand::{rngs::StdRng, SeedableRng};

	use super::*;

	fn evaluate_univariate_naive<F: Field>(coeffs: &[F], x: F) -> F {
		coeffs
			.iter()
			.enumerate()
			.map(|(i, &coeff)| coeff * x.pow(slice::from_ref(&(i as u64))))
			.sum()
	}

	#[test]
	fn test_new_domain() {
		let domain_factory = DefaultEvaluationDomainFactory::<BinaryField8b>::default();
		assert_eq!(
			domain_factory.create(3).unwrap().points,
			&[
				BinaryField8b::new(0),
				BinaryField8b::new(1),
				BinaryField8b::new(2)
			]
		);
	}

	#[test]
	fn test_domain_factory_binary_field() {
		let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
		let iso_domain_factory = IsomorphicEvaluationDomainFactory::<BinaryField32b>::default();
		let domain_1: EvaluationDomain<BinaryField32b> = default_domain_factory.create(10).unwrap();
		let domain_2: EvaluationDomain<BinaryField32b> = iso_domain_factory.create(10).unwrap();
		assert_eq!(domain_1.points, domain_2.points);
	}

	#[test]
	fn test_domain_factory_aes() {
		let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
		let iso_domain_factory = IsomorphicEvaluationDomainFactory::<BinaryField32b>::default();
		let domain_1: EvaluationDomain<BinaryField32b> = default_domain_factory.create(10).unwrap();
		let domain_2: EvaluationDomain<AESTowerField32b> = iso_domain_factory.create(10).unwrap();
		assert_eq!(
			domain_1
				.points
				.into_iter()
				.map(AESTowerField32b::from)
				.collect::<Vec<_>>(),
			domain_2.points
		);
	}

	#[test]
	fn test_new_oversized_domain() {
		let default_domain_factory = DefaultEvaluationDomainFactory::<BinaryField8b>::default();
		assert_matches!(default_domain_factory.create(300), Err(Error::DomainSizeTooLarge));
	}

	#[test]
	fn test_evaluate_univariate() {
		let mut rng = StdRng::seed_from_u64(0);
		let coeffs = repeat_with(|| <BinaryField8b as Field>::random(&mut rng))
			.take(6)
			.collect::<Vec<_>>();
		let x = <BinaryField8b as Field>::random(&mut rng);
		assert_eq!(evaluate_univariate(&coeffs, x), evaluate_univariate_naive(&coeffs, x));
	}

	#[test]
	fn test_evaluate_univariate_no_coeffs() {
		let mut rng = StdRng::seed_from_u64(0);
		let x = <BinaryField32b as Field>::random(&mut rng);
		assert_eq!(evaluate_univariate(&[], x), BinaryField32b::ZERO);
	}

	#[test]
	fn test_random_extrapolate() {
		let mut rng = StdRng::seed_from_u64(0);
		let degree = 6;

		let domain = EvaluationDomain::from_points(
			repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
				.take(degree + 1)
				.collect(),
		)
		.unwrap();

		let coeffs = repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
			.take(degree + 1)
			.collect::<Vec<_>>();

		let values = domain
			.points()
			.iter()
			.map(|&x| evaluate_univariate(&coeffs, x))
			.collect::<Vec<_>>();

		let x = <BinaryField32b as Field>::random(&mut rng);
		let expected_y = evaluate_univariate(&coeffs, x);
		assert_eq!(domain.extrapolate(&values, x).unwrap(), expected_y);
	}

	#[test]
	fn test_interpolation() {
		let mut rng = StdRng::seed_from_u64(0);
		let degree = 6;

		let domain = EvaluationDomain::from_points(
			repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
				.take(degree + 1)
				.collect(),
		)
		.unwrap();

		let coeffs = repeat_with(|| <BinaryField32b as Field>::random(&mut rng))
			.take(degree + 1)
			.collect::<Vec<_>>();

		let values = domain
			.points()
			.iter()
			.map(|&x| evaluate_univariate(&coeffs, x))
			.collect::<Vec<_>>();

		let interpolated = InterpolationDomain::from(domain)
			.interpolate(&values)
			.unwrap();
		assert_eq!(interpolated, coeffs);
	}

	proptest! {
		#[test]
		fn test_extrapolate_line(x0 in 0u32.., x1 in 0u32.., z in 0u8..) {
			let x0 = BinaryField32b::from(x0);
			let x1 = BinaryField32b::from(x1);
			let z = BinaryField8b::from(z);
			assert_eq!(extrapolate_line(x0, x1, z), x0 + (x1 - x0) * z);
			assert_eq!(extrapolate_line_scalar(x0, x1, z), x0 + (x1 - x0) * z);
		}

		#[test]
		fn test_lagrange_evals(values in vec(0u32.., 0..100), z in 0u32..) {
			let field_values = values.into_iter().map(BinaryField32b::from).collect::<Vec<_>>();
			let factory = DefaultEvaluationDomainFactory::<BinaryField32b>::default();
			let evaluation_domain = factory.create(field_values.len()).unwrap();

			let z = BinaryField32b::new(z);

			let extrapolated = evaluation_domain.extrapolate(field_values.as_slice(), z).unwrap();
			let lagrange_coeffs = evaluation_domain.lagrange_evals(z);
			let lagrange_eval = inner_product_unchecked(lagrange_coeffs.into_iter(), field_values.into_iter());
			assert_eq!(lagrange_eval, extrapolated);
		}
	}
}