binius_ntt/
odd_interpolate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Copyright 2024-2025 Irreducible Inc.

use binius_field::BinaryField;
use binius_math::Matrix;
use binius_utils::{bail, checked_arithmetics::log2_ceil_usize};

use crate::{additive_ntt::AdditiveNTT, error::Error, twiddle::TwiddleAccess};

pub struct OddInterpolate<F: BinaryField> {
	vandermonde_inverse: Matrix<F>,
	ell: usize,
}

impl<F: BinaryField> OddInterpolate<F> {
	/// Create a new odd interpolator into novel polynomial basis for domains of size $d \times 2^{\ell}$.
	/// Takes a reference to NTT twiddle factors to seed the "Vandermonde" matrix and compute its inverse.
	/// Time complexity is $\mathcal{O}(d^3).$
	pub fn new<TA>(d: usize, ell: usize, twiddle_access: &[TA]) -> Result<Self, Error>
	where
		TA: TwiddleAccess<F>,
	{
		let vandermonde = novel_vandermonde(d, ell, twiddle_access)?;

		let mut vandermonde_inverse = Matrix::zeros(d, d);
		vandermonde.inverse_into(&mut vandermonde_inverse)?;

		Ok(Self {
			vandermonde_inverse,
			ell,
		})
	}

	/// Let $L/\mathbb F_2$ be a binary field, and fix an $\mathbb F_2$-basis $1=:\beta_0,\ldots, \beta_{r-1}$ as usual.
	/// Let $d\geq 1$ be an odd integer and let $\ell\geq 0$ be an integer. Let
	/// $[a_0,\ldots, a_{d\times 2^{\ell} - 1}]$ be a list of elements of $L$. There is a unique univariate polynomial
	/// $P(X)\in L\[X\]$ of degree less than $d\times 2^{\ell}$ such that the *evaluations* of $P$ on the "first" $d\times 2^{\ell}$
	/// elements of $L$ (in little-Endian binary counting order with respect to the basis $\beta_0,\ldots, \beta_{r}$)
	/// are precisely $a_0,\ldots, a_{d\times 2^{\ell} - 1}$.
	///
	/// We efficiently compute the coefficients of $P(X)$ with respect to the Novel Polynomial Basis (itself taken
	/// with respect to the given ordered list $\beta_0,\ldots, \beta_{r-1}$).
	///
	/// Time complexity is $\mathcal{O}(d^2\times 2^{\ell} + \ell 2^{\ell})$, thus this routine is intended to be used
	/// for small values of $d$.
	pub fn inverse_transform<NTT>(&self, ntt: &NTT, data: &mut [F]) -> Result<(), Error>
	where
		// REVIEW: generalize this to any P: PackedField<Scalar=F>
		NTT: AdditiveNTT<F>,
	{
		let d = self.vandermonde_inverse.m();
		let ell = self.ell;

		if data.len() != d << ell {
			bail!(Error::OddInterpolateIncorrectLength {
				expected_len: d << ell
			});
		}

		let log_required_domain_size = log2_ceil_usize(d) + ell;
		if ntt.log_domain_size() < log_required_domain_size {
			bail!(Error::DomainTooSmall {
				log_required_domain_size
			});
		}

		for (i, chunk) in data.chunks_exact_mut(1 << ell).enumerate() {
			ntt.inverse_transform(chunk, i as u32, 0)?;
		}

		// Given M and a vector v, do the "strided product" M v. In more detail: we assume matrix is $d\times d$,
		// and vector is $d\times 2^{\ell}$. For each $i$ in $0,\ldots, 2^{\ell-1}$, let $v_i$ be the subvect
		// given by those entries whose index is congruent to $i$ mod $2^{\ell}$. Then this computes $M v_i$,
		// and finally "interleaves" the result (which means that we treat $M v_i = w_i$ for each $i$ and then conjure
		// up the associated vector $w$.)
		let mut bases = vec![F::ZERO; d];
		let mut novel = vec![F::ZERO; d];
		// TODO: use `Matrix::mul_into`, implement when data is a slice of type `P: PackedField<Scalar=F>`.
		for stride in 0..1 << ell {
			(0..d).for_each(|i| bases[i] = data[i << ell | stride]);
			self.vandermonde_inverse.mul_vec_into(&bases, &mut novel);
			(0..d).for_each(|i| data[i << ell | stride] = novel[i]);
		}

		Ok(())
	}
}

/// Compute the Vandermonde matrix: $X^{(\ell)}_i(w^{\ell}_j)$, where $w^{\ell}_j$ is the $j^{\text{th}}$ element of the field
/// with respect to the $\beta^{(\ell)}_i$ in little Endian order. The matrix has dimensions $d\times d$.
/// The key trick is that $\widehat{W}^{(\ell)}_i(\beta^{\ell}_j) = $\widehat{W}_{i+\ell}(\beta_{j+\ell})$.
fn novel_vandermonde<F, TA>(d: usize, ell: usize, twiddle_access: &[TA]) -> Result<Matrix<F>, Error>
where
	F: BinaryField,
	TA: TwiddleAccess<F>,
{
	if d == 0 {
		return Ok(Matrix::zeros(0, 0));
	}

	let log_d = log2_ceil_usize(d);

	// This will contain the evaluations of $X^{(\ell)}_{j}(w^{(\ell)}_i)$. As usual, indexing goes from 0..d-1.
	let mut x_ell = Matrix::zeros(d, d);

	// $X_0$ is the function "1".
	(0..d).for_each(|j| x_ell[(j, 0)] = F::ONE);

	let log_required_domain_size = log_d + ell;
	if twiddle_access.len() < log_required_domain_size {
		bail!(Error::DomainTooSmall {
			log_required_domain_size
		});
	}

	for (j, twiddle_access_j_plus_ell) in twiddle_access[ell..ell + log_d].iter().enumerate() {
		assert!(twiddle_access_j_plus_ell.log_n() >= log_d - 1 - j);

		for i in 0..d {
			x_ell[(i, 1 << j)] = twiddle_access_j_plus_ell.get(i >> (j + 1))
				+ if (i >> j) & 1 == 1 { F::ONE } else { F::ZERO };
		}

		// Note that the jth column of x_ell is the ordered list of values $X_j(w_i)$ for i = 0, ..., d-1.
		for k in 1..(1 << j).min(d - (1 << j)) {
			for t in 0..d {
				x_ell[(t, k + (1 << j))] = x_ell[(t, k)] * x_ell[(t, 1 << j)];
			}
		}
	}

	Ok(x_ell)
}

#[cfg(test)]
mod tests {
	use std::iter::repeat_with;

	use binius_field::{BinaryField32b, Field};
	use rand::{rngs::StdRng, SeedableRng};

	use super::*;
	use crate::single_threaded::SingleThreadedNTT;

	#[test]
	fn test_interpolate_odd() {
		type F = BinaryField32b;
		let max_ell = 8;
		let max_d = 10;

		let mut rng = StdRng::seed_from_u64(0);
		let ntt = SingleThreadedNTT::<F>::new(max_ell + log2_ceil_usize(max_d)).unwrap();

		for ell in 0..max_ell {
			for d in 0..max_d {
				let expected_novel = repeat_with(|| F::random(&mut rng))
					.take(d << ell)
					.collect::<Vec<_>>();

				let mut ntt_evals = expected_novel.clone();
				// zero-pad to the next power of two to apply the forward transform.
				let next_power_of_two = 1 << log2_ceil_usize(expected_novel.len());
				ntt_evals.resize(next_power_of_two, F::ZERO);
				// apply forward transform and then run our odd interpolation routine.
				ntt.forward_transform(&mut ntt_evals, 0, 0).unwrap();

				let odd_interpolate = OddInterpolate::new(d, ell, &ntt.s_evals).unwrap();
				odd_interpolate
					.inverse_transform(&ntt, &mut ntt_evals[..d << ell])
					.unwrap();

				assert_eq!(expected_novel, &ntt_evals[..d << ell]);
			}
		}
	}
}