binius_ntt/
twiddle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright 2024-2025 Irreducible Inc.

use std::{marker::PhantomData, ops::Deref};

use binius_field::{BinaryField, Field};

use crate::Error;

/// A trait for accessing twiddle factors in a single NTT round.
///
/// Twiddle factors in the additive NTT are subspace polynomial evaluations over linear subspaces,
/// with an implicit NTT round $i$.
/// Setup: let $K \mathbin{/} \mathbb{F}\_2$ be a finite extension of degree $d$, and let $\beta_0,\ldots ,\beta_{d-1}$ be an $\mathbb{F}\_2$-basis.
/// Let $U_i$ be the $\mathbb{F}\_2$-linear span of $\beta_0,\ldots ,\beta_{i-1}$. Let $\hat{W}_i(X)$
/// be the normalized subspace polynomial of degree $2^i$ that vanishes on $U_i$ and is $1$ on $\beta_i$.
/// Evaluating $\hat{W}_i(X)$ turns out to yield an $\mathbb{F}\_2$-linear function $K \rightarrow K$.
///
/// This trait accesses the subspace polynomial evaluations for $\hat{W}\_i(X)$.
/// The evaluations of the vanishing polynomial over all elements in any coset of the subspace
/// are equal. Equivalently, the evaluations of $\hat{W}\_i(X)$ are well-defined on
/// the $d-i$-dimensional vector space $K \mathbin{/} U_i$. Note that $K \mathbin{/} U_i$ has a natural induced basis.
/// Write $\{j\}$ for the $j$th coset of the subspace, where $j$ is in $[0,2^{d-i})$, with respect
/// to this natural basis. This means: write $j$ in binary: $j = j_0 + \cdots + j_{d-i-1} \cdot 2^{d-i-1}$
/// and consider the following element of $K$: $j_0 \cdot \beta_i + \cdots  + j_{d-i-1} \cdot \beta_{d-1}$.
/// This element determines an element of $K \mathbin{/} U_i$.
/// The twiddle factor $t_{i,j}$ is then $\hat{W}\_i(\{j\})$, i.e., $\hat{W}\_j$ evaluated at the aforementioned element of
/// the quotient $K \mathbin{/} U_i$.
///
/// As explained, the evaluations of these polynomial yield linear functions, which allows for flexibility in how they are computed.
/// Namely, for an evaluation domain of size $2^{i}$, there is a strategy for computing polynomial
/// evaluations "on-the-fly" with $O(\ell)$ field additions using $O(\ell)$ stored elements or precomputing the $2^\ell$ evaluations and
/// looking them up in constant time (see the [`OnTheFlyTwiddleAccess`] and
/// [`PrecomputedTwiddleAccess`] implementations, respectively).
///
/// See [LCH14] and [DP24] Section 2.3 for more details.
///
/// [LCH14]: <https://arxiv.org/abs/1404.3458>
/// [DP24]: <https://eprint.iacr.org/2024/504>
pub trait TwiddleAccess<F: BinaryField> {
	/// Base-2 logarithm of the number of twiddle factors in this round.
	fn log_n(&self) -> usize;

	/// Get the twiddle factor at the given index.
	///
	/// Evaluate $\hat{W}\_i(X)$ at the element `index`: write `index` in binary
	/// and evaluate at the element $index_0\beta_{i+1} \ldots + index_{d-i-2}\beta_{d-1}$.
	///
	/// Panics if `index` is not in the range 0 to `1 << self.log_n()`.
	fn get(&self, index: usize) -> F;

	/// Get the pair of twiddle factors at the indices `index` and `(1 << index_bits) | index`.
	///
	/// Panics if `index_bits` is not in the range 0 to `self.log_n()` or `index` is not in the
	/// range 0 to `1 << index_bits`.
	fn get_pair(&self, index_bits: usize, index: usize) -> (F, F);

	/// Returns a scoped twiddle access for the coset that fixes the upper `coset_bits` of the
	/// index to `coset`.
	///
	/// Recall that a `TwiddleAccess` has an implicit NTT round $i$. Let $j=d-coset_{bits}$.
	/// Then`coset` returns a `TwiddleAccess` object (of NTT round i) for the following affine  
	/// subspace of $K/U_{i-1}$: the set of all elements of $K/U_{i-1}$
	/// whose coordinates in the basis $\beta_i,\ldots ,\beta_{d-1}$ is:
	/// $(*, \cdots, *, coset_{0}, \ldots , coset_{bits-1})$, where the first $j$ coordinates are arbitrary.
	/// Here $coset = coset_0 + \ldots  + coset_{bits-1}2^{bits-1}$. In sum, this amounts to *evaluations* of $\hat{W}\_i$
	/// at all such elements.
	///
	/// Therefore, the `self.log_n` of the new `TwiddleAccess` object is computed as `self.log_n() - coset_bits`.
	///
	/// Panics if `coset_bits` is not in the range 0 to `self.log_n()` or `coset` is not in the
	/// range 0 to `1 << coset_bits`.
	fn coset(&self, coset_bits: usize, coset: usize) -> impl TwiddleAccess<F>;
}

/// Twiddle access method that does on-the-fly computation to reduce its memory footprint.
///
/// This implementation uses a small amount of precomputed constants from which the twiddle factors
/// are derived on the fly (OTF). The number of constants is ~$1/2 d^2$ field elements for a domain
/// of size $2^d$.
#[derive(Debug)]
pub struct OnTheFlyTwiddleAccess<F, SEvals = Vec<F>> {
	log_n: usize,
	/// `offset` is a constant that is added to all twiddle factors.
	offset: F,
	/// `s_evals` is $<\hat{W}\_i(\beta_{i+1}),\ldots ,\hat{W}\_i(\beta_{d-1})>$ for the implicit round $i$.
	s_evals: SEvals,
}

impl<F: BinaryField> OnTheFlyTwiddleAccess<F> {
	/// Generate a vector of OnTheFlyTwiddleAccess objects, one for each NTT round.
	pub fn generate<DomainField: BinaryField + Into<F>>(
		log_domain_size: usize,
	) -> Result<Vec<Self>, Error> {
		let s_evals = precompute_subspace_evals::<F, DomainField>(log_domain_size)?
			.into_iter()
			.enumerate()
			.map(|(i, s_evals_i)| OnTheFlyTwiddleAccess {
				log_n: log_domain_size - 1 - i,
				offset: F::ZERO,
				s_evals: s_evals_i,
			})
			.collect();
		// The `s_evals` for the $i$th round contains the evaluations of $\hat{W}\_i$ on
		// $\beta_{i+1},\ldots ,\beta_{d-1}$.
		Ok(s_evals)
	}
}

impl<F, SEvals> TwiddleAccess<F> for OnTheFlyTwiddleAccess<F, SEvals>
where
	F: BinaryField,
	SEvals: Deref<Target = [F]>,
{
	#[inline]
	fn log_n(&self) -> usize {
		self.log_n
	}

	#[inline]
	fn get(&self, i: usize) -> F {
		self.offset + subset_sum(&self.s_evals, self.log_n, i)
	}

	#[inline]
	fn get_pair(&self, index_bits: usize, i: usize) -> (F, F) {
		let t0 = self.offset + subset_sum(&self.s_evals, index_bits, i);
		(t0, t0 + self.s_evals[index_bits])
	}

	#[inline]
	fn coset(&self, coset_bits: usize, coset: usize) -> impl TwiddleAccess<F> {
		let log_n = self.log_n - coset_bits;
		let offset = subset_sum(&self.s_evals[log_n..], coset_bits, coset);
		OnTheFlyTwiddleAccess {
			log_n,
			offset: self.offset + offset,
			s_evals: &self.s_evals[..log_n],
		}
	}
}

fn subset_sum<F: Field>(values: &[F], n_bits: usize, index: usize) -> F {
	(0..n_bits)
		.filter(|b| (index >> b) & 1 != 0)
		.map(|b| values[b])
		.sum()
}

/// Twiddle access method using a larger table of precomputed constants.
///
/// This implementation precomputes all $2^k$ twiddle factors for a domain of size $2^k$.
#[derive(Debug)]
pub struct PrecomputedTwiddleAccess<F, SEvals = Vec<F>> {
	log_n: usize,
	/// If we are implicitly in NTT round i, then `s_evals` contains the evaluations of $\hat{W}\_i$
	/// on the entire space $K/U_{i+1}$, where the order is the usual "binary counting order"
	/// in the basis vectors $\beta_{i+1},\ldots ,\beta_{d-1}$.
	///
	/// While $\hat{W}\_i$ is indeed well-defined on $K/U_i$, we have the
	/// normalization $\hat{W}\_{i}(\beta_i)=1$, hence to specify the function we need
	/// only specify it on $K/U_{i+1}$, equivalently, the $\mathbb{F}_2$-span of $\beta_{i+1},\ldots ,\beta_{d-1}$.
	s_evals: SEvals,
	_marker: PhantomData<F>,
}

impl<F: BinaryField> PrecomputedTwiddleAccess<F> {
	pub fn generate<DomainField: BinaryField + Into<F>>(
		log_domain_size: usize,
	) -> Result<Vec<Self>, Error> {
		let on_the_fly = OnTheFlyTwiddleAccess::<F, _>::generate::<DomainField>(log_domain_size)?;
		Ok(expand_subspace_evals(&on_the_fly))
	}
}

impl<F, SEvals> TwiddleAccess<F> for PrecomputedTwiddleAccess<F, SEvals>
where
	F: BinaryField,
	SEvals: Deref<Target = [F]>,
{
	#[inline]
	fn log_n(&self) -> usize {
		self.log_n
	}

	#[inline]
	fn get(&self, i: usize) -> F {
		self.s_evals[i]
	}

	#[inline]
	fn get_pair(&self, index_bits: usize, i: usize) -> (F, F) {
		(self.s_evals[i], self.s_evals[1 << index_bits | i])
	}

	#[inline]
	fn coset(&self, coset_bits: usize, coset: usize) -> impl TwiddleAccess<F> {
		let log_n = self.log_n - coset_bits;
		PrecomputedTwiddleAccess {
			log_n,
			s_evals: &self.s_evals[coset << log_n..(coset + 1) << log_n],
			_marker: PhantomData,
		}
	}
}

/// Precompute the evaluations of the normalized subspace polynomials $\hat{W}_i$ on a basis.
///
/// Let $K/\mathbb{F}_2$ be a finite extension of degree $d$, and let $\beta_0,\ldots ,\beta_{d-1}$ be a linear basis,
/// with $\beta_0$ = 1. Let $U_i$ be the $\mathbb{F}_2$-linear span of $\beta_0,\ldots ,\beta_{i-1}$, so $U_0$ is the zero subspace.
/// Let $\hat{W}\_i(X)$ be the normalized subspace polynomial of degree $2^i$ that vanishes on $U_i$
/// and is $1$ on $\beta_i$.
/// Return a vector whose $i$th entry is a vector of evaluations of $\hat{W}\_i$ at $\beta_{i+1},\ldots ,\beta_{d-1}$.
fn precompute_subspace_evals<F: BinaryField, DomainField: BinaryField + Into<F>>(
	log_domain_size: usize,
) -> Result<Vec<Vec<F>>, Error> {
	if DomainField::N_BITS < log_domain_size {
		return Err(Error::FieldTooSmall { log_domain_size });
	}

	let mut s_evals = Vec::with_capacity(log_domain_size);

	// `normalization_consts[i]` = $W\_i(2^i):=  W\_i(\beta_i)$
	let mut normalization_consts = Vec::with_capacity(log_domain_size);
	// $\beta_0 = 1$ and $W\_0(X) = X$, so $W\_0(\beta_0) = \beta_0 = 1$
	normalization_consts.push(F::ONE);
	//`s0_evals` = $(\beta_1,\ldots ,\beta_{d-1}) = (W\_0(\beta_1), \ldots , W\_0(\beta_{d-1}))$
	let s0_evals = (1..log_domain_size)
		.map(|i| {
			DomainField::basis(i)
				.expect("basis vector must exist because of FieldTooSmall check above")
				.into()
		})
		.collect::<Vec<F>>();

	s_evals.push(s0_evals);
	// let $W\_i(X)$ be the *unnormalized* subspace polynomial, i.e., $\prod_{u\in U_{i}}(X-u)$.
	// Then $W\_{i+1}(X) = W\_i(X)(W\_i(X)+W\_i(\beta_i))$. This crucially uses the "linearity" of
	// $W\_i(X)$. This fundamental relation allows us to iteratively compute `s_evals` layer by layer.
	for _ in 1..log_domain_size {
		let (norm_const_i, s_i_evals) = {
			let norm_prev = *normalization_consts
				.last()
				.expect("normalization_consts is not empty");
			let s_prev_evals = s_evals.last().expect("s_evals is not empty");
			// `norm_prev` = $W\_{i-1}(\beta_{i-1})$
			// s_prev_evals = $W\_{i-1}(\beta_i),\ldots ,W\_{i-1}(\beta_{d-1})$
			let norm_const_i = subspace_map(s_prev_evals[0], norm_prev);
			let s_i_evals = s_prev_evals
				.iter()
				.skip(1)
				.map(|&s_ij_prev| subspace_map(s_ij_prev, norm_prev))
				.collect::<Vec<_>>();
			// the two calls to the function subspace_map yield the following:
			// `norm_const_i` = $W\_{i}(\beta_i)$; and
			// `s_i_evals` = $W\_{i}(\beta_{i+1}),\ldots ,W\_{i}(\beta_{d-1})$.
			(norm_const_i, s_i_evals)
		};

		normalization_consts.push(norm_const_i);
		s_evals.push(s_i_evals);
	}

	for (norm_const_i, s_evals_i) in normalization_consts.iter().zip(s_evals.iter_mut()) {
		let inv_norm_const = norm_const_i
			.invert()
			.expect("normalization constants are nonzero");
		// replace all terms $W\_{i}(\beta_j)$ with $W\_{i}(\beta_j)/W\_{i}(\beta_i)$
		// to obtain the evaluations of the *normalized* subspace polynomials.
		for s_ij in s_evals_i.iter_mut() {
			*s_ij *= inv_norm_const;
		}
	}

	Ok(s_evals)
}
/// Computes the function $(e,c)\mapsto e^2+ce$.
///
/// This is primarily used to compute $W\_{i+1}(X)$ from $W\_i(X)$ in the binary field setting.
fn subspace_map<F: Field>(elem: F, constant: F) -> F {
	elem.square() + constant * elem
}
/// Given `OnTheFlyTwiddleAccess` instances for each NTT round, returns a vector of `PrecomputedTwiddleAccess` objects,
/// one for each NTT round.
///
/// For each round $i$, the input contains the value of $\hat{W}\_i$ on the basis $\beta_{i+1},\ldots ,\beta_{d-1}$.
/// The ith element of the output contains the evaluations of $\hat{W}\_i$ on the entire space $K/U_{i+1}$,
/// where the order is the usual "binary counting order" in $\beta_{i+1},\ldots ,\beta_{d-1}$.
/// While $\hat{W}\_i$ is well-defined on $K/U_i$, we have the normalization $\hat{W}\_{i}(\beta_i)=1$,
/// hence to specify the function we need only specify it on $K/U_{i+1}$.
pub fn expand_subspace_evals<F, SEvals>(
	on_the_fly: &[OnTheFlyTwiddleAccess<F, SEvals>],
) -> Vec<PrecomputedTwiddleAccess<F>>
where
	F: BinaryField,
	SEvals: Deref<Target = [F]>,
{
	let log_domain_size = on_the_fly.len();
	on_the_fly
		.iter()
		.enumerate()
		.map(|(i, on_the_fly_i)| {
			let s_evals_i = &on_the_fly_i.s_evals;

			let mut expanded = Vec::with_capacity(1 << s_evals_i.len());
			expanded.push(F::ZERO);
			for &eval in s_evals_i.iter() {
				for i in 0..expanded.len() {
					expanded.push(expanded[i] + eval);
				}
			}

			PrecomputedTwiddleAccess {
				log_n: log_domain_size - 1 - i,
				s_evals: expanded,
				_marker: PhantomData,
			}
		})
		.collect()
}

#[cfg(test)]
mod tests {
	use binius_field::{BinaryField, BinaryField16b, BinaryField32b, BinaryField8b};
	use lazy_static::lazy_static;
	use proptest::prelude::*;

	use super::{OnTheFlyTwiddleAccess, PrecomputedTwiddleAccess, TwiddleAccess};

	lazy_static! {
		// Precomputed and OnTheFlytwiddle access objects for various binary field sizes.
		// We avoided doing the 32B precomputed twiddle access because the tests take too long.
		static ref PRECOMPUTED_TWIDDLE_ACCESS_8B: Vec<PrecomputedTwiddleAccess<BinaryField8b>> =
			PrecomputedTwiddleAccess::<BinaryField8b>::generate::<BinaryField8b>(8).unwrap();

		static ref OTF_TWIDDLE_ACCESS_8B: Vec<OnTheFlyTwiddleAccess<BinaryField8b>> =
			OnTheFlyTwiddleAccess::<BinaryField8b>::generate::<BinaryField8b>(8).unwrap();

		static ref PRECOMPUTED_TWIDDLE_ACCESS_16B: Vec<PrecomputedTwiddleAccess<BinaryField16b>> =
			PrecomputedTwiddleAccess::<BinaryField16b>::generate::<BinaryField16b>(16).unwrap();

		static ref OTF_TWIDDLE_ACCESS_16B: Vec<OnTheFlyTwiddleAccess<BinaryField16b>> =
			OnTheFlyTwiddleAccess::<BinaryField16b>::generate::<BinaryField16b>(16).unwrap();

		static ref OTF_TWIDDLE_ACCESS_32B: Vec<OnTheFlyTwiddleAccess<BinaryField32b>> =
			OnTheFlyTwiddleAccess::<BinaryField32b>::generate::<BinaryField32b>(32).unwrap();
	}

	// Tests that `PrecomputedTwiddleAccess` and `OnTheFlyTwiddleAccess`is linear.
	// (This is more or less by design/construction for `PrecomputedTwiddleAccess`.)
	// More concretely: picks a `layer`, $\ell$, and two valid indices,
	// checks if the claimed equality holds: $\hat{W}_{\ell}(x) + \hat{W}_{\ell}(y) = \hat{W}_{\ell}(x + y).$
	proptest! {
		#[test]
		fn test_linearity_precomputed_8b((x, y, layer) in generate_layer_and_indices(8)) {
			let twiddle_access = &PRECOMPUTED_TWIDDLE_ACCESS_8B[layer];
			test_linearity::<BinaryField8b, _>(twiddle_access, x, y);
		}

		#[test]
		fn test_linearity_precomputed_16b((x, y, layer) in generate_layer_and_indices(16)) {
			let twiddle_access = &PRECOMPUTED_TWIDDLE_ACCESS_16B[layer];
			test_linearity::<BinaryField16b, _>(twiddle_access, x, y);
		}

		#[test]
		fn test_linearity_otf_8b((x, y, layer) in generate_layer_and_indices(8)) {
			let twiddle_access = &OTF_TWIDDLE_ACCESS_8B[layer];
			test_linearity::<BinaryField8b, _>(twiddle_access, x, y);
		}

		#[test]
		fn test_linearity_otf_16b((x, y, layer) in generate_layer_and_indices(16)) {
			let twiddle_access = &OTF_TWIDDLE_ACCESS_16B[layer];
			test_linearity::<BinaryField16b, _>(twiddle_access, x, y);
		}

		#[test]
		fn test_linearity_otf_32b((x, y, layer) in generate_layer_and_indices(32)) {
			let twiddle_access = &OTF_TWIDDLE_ACCESS_32B[layer];
			test_linearity::<BinaryField32b, _>(twiddle_access, x, y);
		}

	}

	// Test compatibility between layers for a `TwiddleAccess` object. More precisely,
	// this checks that the values of $\hat{W}_{\ell}$ and $\hat{W}_{\ell+1}$ are compatible.
	proptest! {
		#[test]
		fn test_compatibility_otf_8b((x, layer) in generate_layer_and_index(8)){
			compatibility_between_layers::<BinaryField8b,_>(layer, &OTF_TWIDDLE_ACCESS_8B, x);
		}

		#[test]
		fn test_compatibility_otf_16b((x, layer) in generate_layer_and_index(16)){
			compatibility_between_layers::<BinaryField16b,_>(layer, &OTF_TWIDDLE_ACCESS_16B, x);
		}

		#[test]
		fn test_compatibility_otf_32b((x, layer) in generate_layer_and_index(32)){
			compatibility_between_layers::<BinaryField32b,_>(layer, &OTF_TWIDDLE_ACCESS_32B, x);
		}

		#[test]
		fn test_compatibility_precomputed_8b((x, layer) in generate_layer_and_index(8)){
			compatibility_between_layers::<BinaryField8b,_>(layer, &PRECOMPUTED_TWIDDLE_ACCESS_8B, x);
		}

		#[test]
		fn test_compatibility_precomputed_16b((x, layer) in generate_layer_and_index(16)){
			compatibility_between_layers::<BinaryField16b,_>(layer, &PRECOMPUTED_TWIDDLE_ACCESS_16B, x);
		}

	}

	prop_compose! {
		/// Given a `max_layer`, which is implicitly assumed to be the logarithm of the field size,
		/// generate a layer (between 0 and `max_layer-2`) of the NTT instance,
		/// such that `layer+1` is a valid layer, and furthermore generate
		/// a valid index $x$ for `layer+1`.
		///
		/// Designed to test for compatibility between layers, hence `layer+1` must also be a valid layer.
		fn generate_layer_and_index
			(max_layer: usize)
			(layer in 0usize..max_layer-1)
			(x in 0usize..(1 << (max_layer-layer-2)), layer in Just(layer))
				-> (usize, usize) {
			(x, layer)
		}
	}

	prop_compose! {
		/// Given a `max_layer`, which is implicitly assumed to be the logarithm of the field size,
		/// generate a layer (between 0 and `max_layer-1`) of the NTT instance a
		/// pair of indices $(x, y)$ that are valid for that layer.
		///
		/// Designed for testing linearity.
		fn generate_layer_and_indices
			(max_layer: usize)
			(layer in 0usize..max_layer)
			(x in 0usize..(1 << (max_layer-layer-1)), y in 0usize..1<<(max_layer-layer-1), layer in Just(layer))
				-> (usize, usize, usize) {
			(x, y, layer)
		}
	}

	/// Given a `TwiddleAccess` object, test linearity, i.e., that:
	/// $\hat{W}\_{\ell}(x) + \hat{W}\_{\ell}(y) = \hat{W}\_{\ell}(x + y)$.
	///
	/// Here, it is important to note that although $x$ and $y$ are `usize`, we consider them
	/// elements of the $F$ via the binary expansion encoding the coefficients of a basis
	/// expansion. Then the expression $x+y$ in $F$ corresponds to the bitwise XOR of the
	/// two `usize` values.
	fn test_linearity<F: BinaryField + std::fmt::Display, T: TwiddleAccess<F>>(
		twiddle_access: &T,
		x: usize,
		y: usize,
	) {
		let first_val = twiddle_access.get(x);
		let second_val = twiddle_access.get(y);
		assert_eq!(first_val + second_val, twiddle_access.get(x ^ y));
	}

	/// Test for compatibility between adjacent layers of a `TwiddleAccess` object.
	///
	/// This checks that the values of $\hat{W}\_{\ell}$ and $\hat{W}\_{\ell+1}$ are compatible.
	/// Set $\tilde{W}\_{\ell+1}(X)=\hat{W}\_{\ell}(X)(\hat{W}\_{\ell}(X)+1)$.
	/// Then $\hat{W}\_{\ell+1}(X)=\tilde{W}\_{\ell+1}(X)/\tilde{W}\_{\ell+1}(\beta_{\ell+1})$.
	/// (The above ensures that $\hat{W}\_{\ell+1}$ has the right properties: vanishes in $U_{\ell}$ and
	/// is 1 at $\beta_{\ell+1}$.) This means that knowing $\hat{W}\_{\ell}(x)$ and $\hat{W}\_{\ell}(\beta_{\ell+1}$,
	/// we can compute $\hat{W}\_{\ell+1}(x)$.
	fn compatibility_between_layers<F: BinaryField + std::fmt::Display, T: TwiddleAccess<F>>(
		layer: usize,
		twiddle_access: &[T],
		// `index_next_layer` is a valid index for the layer `layer+1`,
		// i.e., `twiddle_access_next_layer.get(index)` makes sense.
		index_next_layer: usize,
	) {
		let twiddle_access_layer = &twiddle_access[layer];
		let twiddle_access_next_layer = &twiddle_access[layer + 1];
		// `index` corresponds to an element of $F/U_{i+1}$. This corresponds to elements
		// of the space $F/U_i$ whose $\beta_i$ and $\beta_{i+1}$ coordinates are both 0.
		let index = index_next_layer << 1;
		// If index corresponds to an element $x$ in $F$.
		// Claimed value of $\hat{W}_{\ell}(x)$.
		let w_hat_layer_x = twiddle_access_layer.get(index);
		// Claimed value of $\hat{W}_{\ell+1}(x)$.
		let w_hat_next_layer_x = twiddle_access_next_layer.get(index_next_layer);
		// In the below, `beta` refers to $\beta_{\ell+1}$.
		// $\hat{W}_{\ell}(\beta_{\ell+1})$.
		let w_hat_layer_beta = twiddle_access_layer.get(1);
		// `normalizing_factor` is $\hat{W}_{\ell}(\beta) * (\hat{W}_{\ell}(\beta) + 1)$,
		// i.e. $\tilde{W}_{\ell+1}(\beta)$.
		let normalizing_factor = w_hat_layer_beta * w_hat_layer_beta + w_hat_layer_beta;
		assert_eq!(
			w_hat_next_layer_x * normalizing_factor,
			w_hat_layer_x * w_hat_layer_x + w_hat_layer_x
		);
	}
}