#[repr(transparent)]pub struct ScaledUnderlier<U, const N: usize>(pub [U; N]);
Expand description
A type that represents a pair of elements of the same underlier type.
We use it as an underlier for the ScaledPAckedField
type.
Tuple Fields§
§0: [U; N]
Trait Implementations§
Source§impl<U: BitAndAssign + Copy, const N: usize> BitAndAssign for ScaledUnderlier<U, N>
impl<U: BitAndAssign + Copy, const N: usize> BitAndAssign for ScaledUnderlier<U, N>
Source§fn bitand_assign(&mut self, rhs: Self)
fn bitand_assign(&mut self, rhs: Self)
Performs the
&=
operation. Read moreSource§impl<U: BitOrAssign + Copy, const N: usize> BitOrAssign for ScaledUnderlier<U, N>
impl<U: BitOrAssign + Copy, const N: usize> BitOrAssign for ScaledUnderlier<U, N>
Source§fn bitor_assign(&mut self, rhs: Self)
fn bitor_assign(&mut self, rhs: Self)
Performs the
|=
operation. Read moreSource§impl<U: BitXorAssign + Copy, const N: usize> BitXorAssign for ScaledUnderlier<U, N>
impl<U: BitXorAssign + Copy, const N: usize> BitXorAssign for ScaledUnderlier<U, N>
Source§fn bitxor_assign(&mut self, rhs: Self)
fn bitxor_assign(&mut self, rhs: Self)
Performs the
^=
operation. Read moreSource§impl<U: Clone, const N: usize> Clone for ScaledUnderlier<U, N>
impl<U: Clone, const N: usize> Clone for ScaledUnderlier<U, N>
Source§fn clone(&self) -> ScaledUnderlier<U, N>
fn clone(&self) -> ScaledUnderlier<U, N>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<U: ConstantTimeEq, const N: usize> ConstantTimeEq for ScaledUnderlier<U, N>
impl<U: ConstantTimeEq, const N: usize> ConstantTimeEq for ScaledUnderlier<U, N>
Source§impl<U> Divisible<U> for ScaledUnderlier<ScaledUnderlier<U, 2>, 2>where
Self: UnderlierType + NoUninit,
U: UnderlierType + Pod,
impl<U> Divisible<U> for ScaledUnderlier<ScaledUnderlier<U, 2>, 2>where
Self: UnderlierType + NoUninit,
U: UnderlierType + Pod,
Source§type Array = [U; 4]
type Array = [U; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[U]
fn split_mut(&mut self) -> &mut [U]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl<U, const N: usize> Divisible<U> for ScaledUnderlier<U, N>where
Self: UnderlierType,
U: UnderlierType,
impl<U, const N: usize> Divisible<U> for ScaledUnderlier<U, N>where
Self: UnderlierType,
U: UnderlierType,
Source§type Array = [U; N]
type Array = [U; N]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[U]
fn split_mut(&mut self) -> &mut [U]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u128> for ScaledUnderlier<M128, 2>
impl Divisible<u128> for ScaledUnderlier<M128, 2>
Source§type Array = [u128; 2]
type Array = [u128; 2]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u128]
fn split_mut(&mut self) -> &mut [u128]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u128> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
impl Divisible<u128> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
Source§type Array = [u128; 4]
type Array = [u128; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u128]
fn split_mut(&mut self) -> &mut [u128]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<M128, 2>
impl Divisible<u16> for ScaledUnderlier<M128, 2>
Source§type Array = [u16; 16]
type Array = [u16; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
Source§type Array = [u16; 32]
type Array = [u16; 32]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
Source§type Array = [u16; 32]
type Array = [u16; 32]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u32, 2>, 2>
impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u32, 2>, 2>
Source§type Array = [u16; 8]
type Array = [u16; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
impl Divisible<u16> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
Source§type Array = [u16; 16]
type Array = [u16; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<u128, 2>
impl Divisible<u16> for ScaledUnderlier<u128, 2>
Source§type Array = [u16; 16]
type Array = [u16; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<u32, 2>
impl Divisible<u16> for ScaledUnderlier<u32, 2>
Source§type Array = [u16; 4]
type Array = [u16; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u16> for ScaledUnderlier<u64, 2>
impl Divisible<u16> for ScaledUnderlier<u64, 2>
Source§type Array = [u16; 8]
type Array = [u16; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u16]
fn split_mut(&mut self) -> &mut [u16]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<M128, 2>
impl Divisible<u32> for ScaledUnderlier<M128, 2>
Source§type Array = [u32; 8]
type Array = [u32; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
Source§type Array = [u32; 16]
type Array = [u32; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
Source§type Array = [u32; 16]
type Array = [u32; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
impl Divisible<u32> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
Source§type Array = [u32; 8]
type Array = [u32; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<u128, 2>
impl Divisible<u32> for ScaledUnderlier<u128, 2>
Source§type Array = [u32; 8]
type Array = [u32; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u32> for ScaledUnderlier<u64, 2>
impl Divisible<u32> for ScaledUnderlier<u64, 2>
Source§type Array = [u32; 4]
type Array = [u32; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u32]
fn split_mut(&mut self) -> &mut [u32]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u64> for ScaledUnderlier<M128, 2>
impl Divisible<u64> for ScaledUnderlier<M128, 2>
Source§type Array = [u64; 4]
type Array = [u64; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u64]
fn split_mut(&mut self) -> &mut [u64]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u64> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
impl Divisible<u64> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
Source§type Array = [u64; 8]
type Array = [u64; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u64]
fn split_mut(&mut self) -> &mut [u64]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u64> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
impl Divisible<u64> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
Source§type Array = [u64; 8]
type Array = [u64; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u64]
fn split_mut(&mut self) -> &mut [u64]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u64> for ScaledUnderlier<u128, 2>
impl Divisible<u64> for ScaledUnderlier<u128, 2>
Source§type Array = [u64; 4]
type Array = [u64; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u64]
fn split_mut(&mut self) -> &mut [u64]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<M128, 2>
impl Divisible<u8> for ScaledUnderlier<M128, 2>
Source§type Array = [u8; 32]
type Array = [u8; 32]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<M128, 2>, 2>
Source§type Array = [u8; 64]
type Array = [u8; 64]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u128, 2>, 2>
Source§type Array = [u8; 64]
type Array = [u8; 64]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u16, 2>, 2>
impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u16, 2>, 2>
Source§type Array = [u8; 8]
type Array = [u8; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u32, 2>, 2>
impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u32, 2>, 2>
Source§type Array = [u8; 16]
type Array = [u8; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
impl Divisible<u8> for ScaledUnderlier<ScaledUnderlier<u64, 2>, 2>
Source§type Array = [u8; 32]
type Array = [u8; 32]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<u128, 2>
impl Divisible<u8> for ScaledUnderlier<u128, 2>
Source§type Array = [u8; 32]
type Array = [u8; 32]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<u16, 2>
impl Divisible<u8> for ScaledUnderlier<u16, 2>
Source§type Array = [u8; 4]
type Array = [u8; 4]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<u32, 2>
impl Divisible<u8> for ScaledUnderlier<u32, 2>
Source§type Array = [u8; 8]
type Array = [u8; 8]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl Divisible<u8> for ScaledUnderlier<u64, 2>
impl Divisible<u8> for ScaledUnderlier<u64, 2>
Source§type Array = [u8; 16]
type Array = [u8; 16]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> Self::Array
fn split_ref(&self) -> &[u8] ⓘ
fn split_mut(&mut self) -> &mut [u8] ⓘ
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl<U, const N: usize> From<ScaledUnderlier<U, N>> for [U; N]
impl<U, const N: usize> From<ScaledUnderlier<U, N>> for [U; N]
Source§fn from(val: ScaledUnderlier<U, N>) -> Self
fn from(val: ScaledUnderlier<U, N>) -> Self
Converts to this type from the input type.
Source§impl<U: Ord, const N: usize> Ord for ScaledUnderlier<U, N>
impl<U: Ord, const N: usize> Ord for ScaledUnderlier<U, N>
Source§fn cmp(&self, other: &ScaledUnderlier<U, N>) -> Ordering
fn cmp(&self, other: &ScaledUnderlier<U, N>) -> Ordering
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
Source§impl<U, F, const N: usize> PackScalar<F> for ScaledUnderlier<U, N>where
U: PackScalar<F> + UnderlierType + Pod,
F: Field,
ScaledPackedField<U::Packed, N>: PackedField<Scalar = F> + WithUnderlier<Underlier = Self>,
impl<U, F, const N: usize> PackScalar<F> for ScaledUnderlier<U, N>where
U: PackScalar<F> + UnderlierType + Pod,
F: Field,
ScaledPackedField<U::Packed, N>: PackedField<Scalar = F> + WithUnderlier<Underlier = Self>,
type Packed = ScaledPackedField<<U as PackScalar<F>>::Packed, N>
Source§impl<U: PartialOrd, const N: usize> PartialOrd for ScaledUnderlier<U, N>
impl<U: PartialOrd, const N: usize> PartialOrd for ScaledUnderlier<U, N>
Source§impl<U: UnderlierWithBitOps, const N: usize> Shl<usize> for ScaledUnderlier<U, N>
impl<U: UnderlierWithBitOps, const N: usize> Shl<usize> for ScaledUnderlier<U, N>
Source§impl<U: UnderlierWithBitOps, const N: usize> Shr<usize> for ScaledUnderlier<U, N>
impl<U: UnderlierWithBitOps, const N: usize> Shr<usize> for ScaledUnderlier<U, N>
Source§impl<U: UnderlierType + Pod, const N: usize> UnderlierType for ScaledUnderlier<U, N>
impl<U: UnderlierType + Pod, const N: usize> UnderlierType for ScaledUnderlier<U, N>
Source§impl<U: UnderlierWithBitOps + Pod, const N: usize> UnderlierWithBitOps for ScaledUnderlier<U, N>
impl<U: UnderlierWithBitOps + Pod, const N: usize> UnderlierWithBitOps for ScaledUnderlier<U, N>
const ZERO: Self
const ONE: Self
const ONES: Self
Source§fn fill_with_bit(val: u8) -> Self
fn fill_with_bit(val: u8) -> Self
Fill value with the given bit
val
must be 0 or 1.Source§fn shl_128b_lanes(self, rhs: usize) -> Self
fn shl_128b_lanes(self, rhs: usize) -> Self
Left shift within 128-bit lanes.
This can be more efficient than the full
Shl
implementation.Source§fn shr_128b_lanes(self, rhs: usize) -> Self
fn shr_128b_lanes(self, rhs: usize) -> Self
Right shift within 128-bit lanes.
This can be more efficient than the full
Shr
implementation.Source§fn unpack_lo_128b_lanes(self, other: Self, log_block_len: usize) -> Self
fn unpack_lo_128b_lanes(self, other: Self, log_block_len: usize) -> Self
Unpacks
1 << log_block_len
-bit values from low parts of self
and other
within 128-bit lanes. Read moreSource§fn unpack_hi_128b_lanes(self, other: Self, log_block_len: usize) -> Self
fn unpack_hi_128b_lanes(self, other: Self, log_block_len: usize) -> Self
Unpacks
1 << log_block_len
-bit values from high parts of self
and other
within 128-bit lanes. Read morefn from_fn<T>(f: impl FnMut(usize) -> T) -> Selfwhere
T: UnderlierType,
Self: From<T>,
Source§fn broadcast_subvalue<T>(value: T) -> Selfwhere
T: UnderlierType,
Self: From<T>,
fn broadcast_subvalue<T>(value: T) -> Selfwhere
T: UnderlierType,
Self: From<T>,
Broadcast subvalue to fill
Self
.
Self::BITS/T::BITS
is supposed to be a power of 2.Source§unsafe fn get_subvalue<T>(&self, i: usize) -> Twhere
T: UnderlierType + NumCast<Self>,
unsafe fn get_subvalue<T>(&self, i: usize) -> Twhere
T: UnderlierType + NumCast<Self>,
Gets the subvalue from the given position.
Function panics in case when index is out of range. Read more
Source§unsafe fn set_subvalue<T>(&mut self, i: usize, val: T)where
T: UnderlierWithBitOps,
Self: From<T>,
unsafe fn set_subvalue<T>(&mut self, i: usize, val: T)where
T: UnderlierWithBitOps,
Self: From<T>,
Sets the subvalue in the given position.
Function panics in case when index is out of range. Read more
Source§impl<U: Zeroable, const N: usize> Zeroable for ScaledUnderlier<U, N>
impl<U: Zeroable, const N: usize> Zeroable for ScaledUnderlier<U, N>
impl<U: Copy, const N: usize> Copy for ScaledUnderlier<U, N>
impl<U: Eq, const N: usize> Eq for ScaledUnderlier<U, N>
impl<U: Pod, const N: usize> Pod for ScaledUnderlier<U, N>
impl<U, const N: usize> StructuralPartialEq for ScaledUnderlier<U, N>
Auto Trait Implementations§
impl<U, const N: usize> Freeze for ScaledUnderlier<U, N>where
U: Freeze,
impl<U, const N: usize> RefUnwindSafe for ScaledUnderlier<U, N>where
U: RefUnwindSafe,
impl<U, const N: usize> Send for ScaledUnderlier<U, N>where
U: Send,
impl<U, const N: usize> Sync for ScaledUnderlier<U, N>where
U: Sync,
impl<U, const N: usize> Unpin for ScaledUnderlier<U, N>where
U: Unpin,
impl<U, const N: usize> UnwindSafe for ScaledUnderlier<U, N>where
U: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
§type Bits = T
type Bits = T
Self
must have the same layout as the specified Bits
except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern
.§fn is_valid_bit_pattern(_bits: &T) -> bool
fn is_valid_bit_pattern(_bits: &T) -> bool
If this function returns true, then it must be valid to reinterpret
bits
as &Self
.Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<U> Divisible<U> for Uwhere
U: UnderlierType,
impl<U> Divisible<U> for Uwhere
U: UnderlierType,
Source§type Array = [U; 1]
type Array = [U; 1]
This is actually
[U; Self::WIDTH]
but we can’t use it as the default value in the trait definition
without generic_const_exprs
feature enabled.fn split_val(self) -> <U as Divisible<U>>::Array
fn split_ref(&self) -> &[U]
fn split_mut(&mut self) -> &mut [U]
const WIDTH: usize = _
fn split_slice(values: &[Self]) -> &[U]
fn split_slice_mut(values: &mut [Self]) -> &mut [U]
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<U> NumCast<U> for Uwhere
U: UnderlierType,
impl<U> NumCast<U> for Uwhere
U: UnderlierType,
fn num_cast_from(val: U) -> U
§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<U> WithUnderlier for Uwhere
U: UnderlierType,
impl<U> WithUnderlier for Uwhere
U: UnderlierType,
Source§fn to_underlier(self) -> <U as WithUnderlier>::Underlier
fn to_underlier(self) -> <U as WithUnderlier>::Underlier
Convert value to underlier.