pub struct OddInterpolate<F: BinaryField> { /* private fields */ }
Implementations§
Source§impl<F: BinaryField> OddInterpolate<F>
impl<F: BinaryField> OddInterpolate<F>
Sourcepub fn new<TA>(
d: usize,
ell: usize,
twiddle_access: &[TA],
) -> Result<Self, Error>where
TA: TwiddleAccess<F>,
pub fn new<TA>(
d: usize,
ell: usize,
twiddle_access: &[TA],
) -> Result<Self, Error>where
TA: TwiddleAccess<F>,
Create a new odd interpolator into novel polynomial basis for domains of size $d \times 2^{\ell}$. Takes a reference to NTT twiddle factors to seed the “Vandermonde” matrix and compute its inverse. Time complexity is $\mathcal{O}(d^3).$
Sourcepub fn inverse_transform<NTT>(
&self,
ntt: &NTT,
data: &mut [F],
) -> Result<(), Error>where
NTT: AdditiveNTT<F>,
pub fn inverse_transform<NTT>(
&self,
ntt: &NTT,
data: &mut [F],
) -> Result<(), Error>where
NTT: AdditiveNTT<F>,
Let $L/\mathbb F_2$ be a binary field, and fix an $\mathbb F_2$-basis $1=:\beta_0,\ldots, \beta_{r-1}$ as usual. Let $d\geq 1$ be an odd integer and let $\ell\geq 0$ be an integer. Let $[a_0,\ldots, a_{d\times 2^{\ell} - 1}]$ be a list of elements of $L$. There is a unique univariate polynomial $P(X)\in L[X]$ of degree less than $d\times 2^{\ell}$ such that the evaluations of $P$ on the “first” $d\times 2^{\ell}$ elements of $L$ (in little-Endian binary counting order with respect to the basis $\beta_0,\ldots, \beta_{r}$) are precisely $a_0,\ldots, a_{d\times 2^{\ell} - 1}$.
We efficiently compute the coefficients of $P(X)$ with respect to the Novel Polynomial Basis (itself taken with respect to the given ordered list $\beta_0,\ldots, \beta_{r-1}$).
Time complexity is $\mathcal{O}(d^2\times 2^{\ell} + \ell 2^{\ell})$, thus this routine is intended to be used for small values of $d$.
Auto Trait Implementations§
impl<F> Freeze for OddInterpolate<F>
impl<F> RefUnwindSafe for OddInterpolate<F>
impl<F> Send for OddInterpolate<F>
impl<F> Sync for OddInterpolate<F>
impl<F> Unpin for OddInterpolate<F>
impl<F> UnwindSafe for OddInterpolate<F>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more